70 cases deleted message :(

classic Classic list List threaded Threaded
7 messages Options
Reply | Threaded
Open this post in threaded view
|

70 cases deleted message :(

sara
Hi, someone pls help me. I am trying to run a mediation and moderation but am
getting the message below saying it has deleted 70 cases due to missing
values. I have checked and rechecked the data and there is nothing missing.
Of course it is going to be insignificant if its only looking at 7 :(



Run MATRIX procedure:

**************** PROCESS Procedure for SPSS Release 2.041 ****************

        Written by Andrew F. Hayes, Ph.D.   http://www.afhayes.com

**************************************************************************
Model = 4
    Y = ptsdonly
    X = neuroonl
    M = observe

Sample size
         77

**************************************************************************
Outcome: observe

Model Summary
          R       R-sq          F        df1        df2          p
      .2700      .0729     4.5231     1.0000    75.0000      .0367

Model
              coeff         se          t          p       LLCI       ULCI
constant     4.0255      .3321    12.1219      .0000     3.3639     4.6870
neuroonl     -.2316      .1089    -2.1268      .0367     -.4485     -.0147

**************************************************************************
Outcome: ptsdonly

Model Summary
          R       R-sq          F        df1        df2          p
      .1002      .0100      .1894     2.0000    74.0000      .8279

Model
              coeff         se          t          p       LLCI       ULCI
constant      .7684      .6963     1.1036      .2733     -.6190     2.1558
observe      -.0733      .1200     -.6111      .5430     -.3125      .1658
neuroonl     -.0537      .1085     -.4945      .6224     -.2699      .1626

******************** DIRECT AND INDIRECT EFFECTS *************************

Direct effect of X on Y
     Effect         SE          t          p       LLCI       ULCI
     -.0537      .1085     -.4945      .6224     -.2699      .1626

Indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0170      .0254     -.0247      .0779

Partially standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0290      .0452     -.0499      .1253

Completely standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0240      .0367     -.0396      .1060

Ratio of indirect to total effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.4630     6.5527   -43.7991     -.0033

Ratio of indirect to direct effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.3165     4.9203   -48.6823      .1019

R-squared mediation effect size (R-sq_med)
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.0027      .0089     -.0361      .0052

Preacher and Kelley (2011) Kappa-squared
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0233      .0251      .0006      .0866

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0170      .0317      .5352      .5925

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:
     2000

Level of confidence for all confidence intervals in output:
    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:
  70

NOTE: All standard errors for continuous outcome models are based on the HC3
estimator

------ END MATRIX -----




--
Sent from: http://spssx-discussion.1045642.n5.nabble.com/

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: 70 cases deleted message :(

Maguin, Eugene
Have you run descriptives on each variable in the analysis? And is the N for each variable the same and does that number match the number of cases in the analysis file?
Or,
Have you used the nvalid function to count the number of variables in the analysis with valid values and does a frequencies run of that result have a single value equal to the number of variables in the analysis and a frequency value equal to the number of cases in the analysis file?

Gene Maguin


-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of sara
Sent: Monday, October 9, 2017 2:10 AM
To: [hidden email]
Subject: 70 cases deleted message :(

Hi, someone pls help me. I am trying to run a mediation and moderation but am getting the message below saying it has deleted 70 cases due to missing values. I have checked and rechecked the data and there is nothing missing.
Of course it is going to be insignificant if its only looking at 7 :(



Run MATRIX procedure:

**************** PROCESS Procedure for SPSS Release 2.041 ****************

        Written by Andrew F. Hayes, Ph.D.   http://www.afhayes.com

**************************************************************************
Model = 4
    Y = ptsdonly
    X = neuroonl
    M = observe

Sample size
         77

**************************************************************************
Outcome: observe

Model Summary
          R       R-sq          F        df1        df2          p
      .2700      .0729     4.5231     1.0000    75.0000      .0367

Model
              coeff         se          t          p       LLCI       ULCI
constant     4.0255      .3321    12.1219      .0000     3.3639     4.6870
neuroonl     -.2316      .1089    -2.1268      .0367     -.4485     -.0147

**************************************************************************
Outcome: ptsdonly

Model Summary
          R       R-sq          F        df1        df2          p
      .1002      .0100      .1894     2.0000    74.0000      .8279

Model
              coeff         se          t          p       LLCI       ULCI
constant      .7684      .6963     1.1036      .2733     -.6190     2.1558
observe      -.0733      .1200     -.6111      .5430     -.3125      .1658
neuroonl     -.0537      .1085     -.4945      .6224     -.2699      .1626

******************** DIRECT AND INDIRECT EFFECTS *************************

Direct effect of X on Y
     Effect         SE          t          p       LLCI       ULCI
     -.0537      .1085     -.4945      .6224     -.2699      .1626

Indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0170      .0254     -.0247      .0779

Partially standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0290      .0452     -.0499      .1253

Completely standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0240      .0367     -.0396      .1060

Ratio of indirect to total effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.4630     6.5527   -43.7991     -.0033

Ratio of indirect to direct effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.3165     4.9203   -48.6823      .1019

R-squared mediation effect size (R-sq_med)
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.0027      .0089     -.0361      .0052

Preacher and Kelley (2011) Kappa-squared
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0233      .0251      .0006      .0866

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0170      .0317      .5352      .5925

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:
     2000

Level of confidence for all confidence intervals in output:
    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:
  70

NOTE: All standard errors for continuous outcome models are based on the HC3 estimator

------ END MATRIX -----




--
Sent from: http://spssx-discussion.1045642.n5.nabble.com/

=====================
To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: 70 cases deleted message :(

sara

Hi Gene, yes I re-ran the descriptives and N matches. 


Kind regards

Sara Stanley


From: Maguin, Eugene <[hidden email]>
Sent: Tuesday, 10 October 2017 2:02:31 AM
To: Sara Stanley; [hidden email]
Subject: RE: 70 cases deleted message :(
 
Have you run descriptives on each variable in the analysis? And is the N for each variable the same and does that number match the number of cases in the analysis file?
Or,
Have you used the nvalid function to count the number of variables in the analysis with valid values and does a frequencies run of that result have a single value equal to the number of variables in the analysis and a frequency value equal to the number of cases in the analysis file?

Gene Maguin


-----Original Message-----
From: SPSSX(r) Discussion [[hidden email]] On Behalf Of sara
Sent: Monday, October 9, 2017 2:10 AM
To: [hidden email]
Subject: 70 cases deleted message :(

Hi, someone pls help me. I am trying to run a mediation and moderation but am getting the message below saying it has deleted 70 cases due to missing values. I have checked and rechecked the data and there is nothing missing.
Of course it is going to be insignificant if its only looking at 7 :(



Run MATRIX procedure:

**************** PROCESS Procedure for SPSS Release 2.041 ****************

        Written by Andrew F. Hayes, Ph.D.   http://www.afhayes.com

**************************************************************************
Model = 4
    Y = ptsdonly
    X = neuroonl
    M = observe

Sample size
         77

**************************************************************************
Outcome: observe

Model Summary
          R       R-sq          F        df1        df2          p
      .2700      .0729     4.5231     1.0000    75.0000      .0367

Model
              coeff         se          t          p       LLCI       ULCI
constant     4.0255      .3321    12.1219      .0000     3.3639     4.6870
neuroonl     -.2316      .1089    -2.1268      .0367     -.4485     -.0147

**************************************************************************
Outcome: ptsdonly

Model Summary
          R       R-sq          F        df1        df2          p
      .1002      .0100      .1894     2.0000    74.0000      .8279

Model
              coeff         se          t          p       LLCI       ULCI
constant      .7684      .6963     1.1036      .2733     -.6190     2.1558
observe      -.0733      .1200     -.6111      .5430     -.3125      .1658
neuroonl     -.0537      .1085     -.4945      .6224     -.2699      .1626

******************** DIRECT AND INDIRECT EFFECTS *************************

Direct effect of X on Y
     Effect         SE          t          p       LLCI       ULCI
     -.0537      .1085     -.4945      .6224     -.2699      .1626

Indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0170      .0254     -.0247      .0779

Partially standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0290      .0452     -.0499      .1253

Completely standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0240      .0367     -.0396      .1060

Ratio of indirect to total effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.4630     6.5527   -43.7991     -.0033

Ratio of indirect to direct effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.3165     4.9203   -48.6823      .1019

R-squared mediation effect size (R-sq_med)
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.0027      .0089     -.0361      .0052

Preacher and Kelley (2011) Kappa-squared
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0233      .0251      .0006      .0866

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0170      .0317      .5352      .5925

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:
     2000

Level of confidence for all confidence intervals in output:
    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:
  70

NOTE: All standard errors for continuous outcome models are based on the HC3 estimator

------ END MATRIX -----




--
Sent from: http://spssx-discussion.1045642.n5.nabble.com/

=====================
To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: 70 cases deleted message :(

David Marso
Administrator
In reply to this post by Maguin, Eugene
"I have checked and rechecked the data ".

I am never quite certain what this statement means.
What have you done to 'check' the data?
Please do what Gene suggested and you will confirm that there are 7 complete
cases listwise.
---

Maguin, Eugene wrote

> Have you run descriptives on each variable in the analysis? And is the N
> for each variable the same and does that number match the number of cases
> in the analysis file?
> Or,
> Have you used the nvalid function to count the number of variables in the
> analysis with valid values and does a frequencies run of that result have
> a single value equal to the number of variables in the analysis and a
> frequency value equal to the number of cases in the analysis file?
>
> Gene Maguin
>
>
> -----Original Message-----
> From: SPSSX(r) Discussion [mailto:

> SPSSX-L@.UGA

> ] On Behalf Of sara
> Sent: Monday, October 9, 2017 2:10 AM
> To:

> SPSSX-L@.UGA

> Subject: 70 cases deleted message :(
>
> Hi, someone pls help me. I am trying to run a mediation and moderation but
> am getting the message below saying it has deleted 70 cases due to missing
> values. I have checked and rechecked the data and there is nothing
> missing.
> Of course it is going to be insignificant if its only looking at 7 :(
>
>
>
> Run MATRIX procedure:
>
> **************** PROCESS Procedure for SPSS Release 2.041 ****************
>
>         Written by Andrew F. Hayes, Ph.D.   http://www.afhayes.com
>
> **************************************************************************
> Model = 4
>     Y = ptsdonly
>     X = neuroonl
>     M = observe
>
> Sample size
>          77
>
> **************************************************************************
> Outcome: observe
>
> Model Summary
>           R       R-sq          F        df1        df2          p
>       .2700      .0729     4.5231     1.0000    75.0000      .0367
>
> Model
>               coeff         se          t          p       LLCI       ULCI
> constant     4.0255      .3321    12.1219      .0000     3.3639     4.6870
> neuroonl     -.2316      .1089    -2.1268      .0367     -.4485     -.0147
>
> **************************************************************************
> Outcome: ptsdonly
>
> Model Summary
>           R       R-sq          F        df1        df2          p
>       .1002      .0100      .1894     2.0000    74.0000      .8279
>
> Model
>               coeff         se          t          p       LLCI       ULCI
> constant      .7684      .6963     1.1036      .2733     -.6190     2.1558
> observe      -.0733      .1200     -.6111      .5430     -.3125      .1658
> neuroonl     -.0537      .1085     -.4945      .6224     -.2699      .1626
>
> ******************** DIRECT AND INDIRECT EFFECTS *************************
>
> Direct effect of X on Y
>      Effect         SE          t          p       LLCI       ULCI
>      -.0537      .1085     -.4945      .6224     -.2699      .1626
>
> Indirect effect of X on Y
>             Effect    Boot SE   BootLLCI   BootULCI
> observe      .0170      .0254     -.0247      .0779
>
> Partially standardized indirect effect of X on Y
>             Effect    Boot SE   BootLLCI   BootULCI
> observe      .0290      .0452     -.0499      .1253
>
> Completely standardized indirect effect of X on Y
>             Effect    Boot SE   BootLLCI   BootULCI
> observe      .0240      .0367     -.0396      .1060
>
> Ratio of indirect to total effect of X on Y
>             Effect    Boot SE   BootLLCI   BootULCI
> observe     -.4630     6.5527   -43.7991     -.0033
>
> Ratio of indirect to direct effect of X on Y
>             Effect    Boot SE   BootLLCI   BootULCI
> observe     -.3165     4.9203   -48.6823      .1019
>
> R-squared mediation effect size (R-sq_med)
>             Effect    Boot SE   BootLLCI   BootULCI
> observe     -.0027      .0089     -.0361      .0052
>
> Preacher and Kelley (2011) Kappa-squared
>             Effect    Boot SE   BootLLCI   BootULCI
> observe      .0233      .0251      .0006      .0866
>
> Normal theory tests for indirect effect
>      Effect         se          Z          p
>       .0170      .0317      .5352      .5925
>
> ******************** ANALYSIS NOTES AND WARNINGS *************************
>
> Number of bootstrap samples for bias corrected bootstrap confidence
> intervals:
>      2000
>
> Level of confidence for all confidence intervals in output:
>     95.00
>
> NOTE: Some cases were deleted due to missing data.  The number of such
> cases
> was:
>   70
>
> NOTE: All standard errors for continuous outcome models are based on the
> HC3 estimator
>
> ------ END MATRIX -----
>
>
>
>
> --
> Sent from: http://spssx-discussion.1045642.n5.nabble.com/
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the command. To leave the
> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
> subscriptions, send the command INFO REFCARD
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
Please reply to the list and not to my personal email.
Those desiring my consulting or training services please feel free to email me.
---
"Nolite dare sanctum canibus neque mittatis margaritas vestras ante porcos ne forte conculcent eas pedibus suis."
Cum es damnatorum possederunt porcos iens ut salire off sanguinum cliff in abyssum?"
--
Sent from: http://spssx-discussion.1045642.n5.nabble.com/

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Please reply to the list and not to my personal email.
Those desiring my consulting or training services please feel free to email me.
---
"Nolite dare sanctum canibus neque mittatis margaritas vestras ante porcos ne forte conculcent eas pedibus suis."
Cum es damnatorum possederunt porcos iens ut salire off sanguinum cliff in abyssum?"
Reply | Threaded
Open this post in threaded view
|

Re: 70 cases deleted message :(

Rich Ulrich

Here are two tricky instances that I remember,  for "unexpected missing" cases.

1) Using/checking on the wrong variable name. (Oh! That was supposed to be Abc_De, not AbcDe.)
2) Having mis-written a Select If or Match Files  in code that is only used for the run-gone-wrong.

(Do your checking right after the code that produced N=7 valid cases.)


--

Rich Ulrich



From: SPSSX(r) Discussion <[hidden email]> on behalf of David Marso <[hidden email]>
Sent: Monday, October 9, 2017 6:16 PM
To: [hidden email]
Subject: Re: 70 cases deleted message :(
 
"I have checked and rechecked the data ".

I am never quite certain what this statement means.
What have you done to 'check' the data?
Please do what Gene suggested and you will confirm that there are 7 complete
cases listwise.
---
[snip]

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: 70 cases deleted message :(

Maguin, Eugene
In reply to this post by sara

Hi Sara,

I’ve used the Hayes macro only a very few times so I’m not very familiar with it. But, looking through the output (Thank You!) I see that model summaries for observe and ptsdonly show dfs of 75 and 74, which seem right given an N of 77. I take that to mean that you had no missing data for the regression models.

 

You can replicate parts of the macro output using just the regression command. You need three unstandardized coefficients: neuroonl predicts observe (XM); observe predicts ptsdonly (MY); and neuroonl (XY), observe (MY2) predicts ptsdonly. First of all, you should get the same model and model summary numbers as in the output. You can also compute the indirect effect as XM*MY. The direct effect is XY. I bet your numbers will match Hayes.

 

However, I understand none of that explains the message. I think Hayes has a website. Look there.

Gene

 

 

From: Sara Stanley [mailto:[hidden email]]
Sent: Monday, October 9, 2017 5:57 PM
To: Maguin, Eugene <[hidden email]>; [hidden email]
Subject: Re: 70 cases deleted message :(

 

Hi Gene, yes I re-ran the descriptives and N matches. 

 

Kind regards

Sara Stanley


From: Maguin, Eugene <[hidden email]>
Sent: Tuesday, 10 October 2017 2:02:31 AM
To: Sara Stanley; [hidden email]
Subject: RE: 70 cases deleted message :(

 

Have you run descriptives on each variable in the analysis? And is the N for each variable the same and does that number match the number of cases in the analysis file?
Or,
Have you used the nvalid function to count the number of variables in the analysis with valid values and does a frequencies run of that result have a single value equal to the number of variables in the analysis and a frequency value equal to the number of cases in the analysis file?

Gene Maguin


-----Original Message-----
From: SPSSX(r) Discussion [[hidden email]] On Behalf Of sara
Sent: Monday, October 9, 2017 2:10 AM
To: [hidden email]
Subject: 70 cases deleted message :(

Hi, someone pls help me. I am trying to run a mediation and moderation but am getting the message below saying it has deleted 70 cases due to missing values. I have checked and rechecked the data and there is nothing missing.
Of course it is going to be insignificant if its only looking at 7 :(



Run MATRIX procedure:

**************** PROCESS Procedure for SPSS Release 2.041 ****************

        Written by Andrew F. Hayes, Ph.D.   http://www.afhayes.com

**************************************************************************
Model = 4
    Y = ptsdonly
    X = neuroonl
    M = observe

Sample size
         77

**************************************************************************
Outcome: observe

Model Summary
          R       R-sq          F        df1        df2          p
      .2700      .0729     4.5231     1.0000    75.0000      .0367

Model
              coeff         se          t          p       LLCI       ULCI
constant     4.0255      .3321    12.1219      .0000     3.3639     4.6870
neuroonl     -.2316      .1089    -2.1268      .0367     -.4485     -.0147

**************************************************************************
Outcome: ptsdonly

Model Summary
          R       R-sq          F        df1        df2          p
      .1002      .0100      .1894     2.0000    74.0000      .8279

Model
              coeff         se          t          p       LLCI       ULCI
constant      .7684      .6963     1.1036      .2733     -.6190     2.1558
observe      -.0733      .1200     -.6111      .5430     -.3125      .1658
neuroonl     -.0537      .1085     -.4945      .6224     -.2699      .1626

******************** DIRECT AND INDIRECT EFFECTS *************************

Direct effect of X on Y
     Effect         SE          t          p       LLCI       ULCI
     -.0537      .1085     -.4945      .6224     -.2699      .1626

Indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0170      .0254     -.0247      .0779

Partially standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0290      .0452     -.0499      .1253

Completely standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0240      .0367     -.0396      .1060

Ratio of indirect to total effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.4630     6.5527   -43.7991     -.0033

Ratio of indirect to direct effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.3165     4.9203   -48.6823      .1019

R-squared mediation effect size (R-sq_med)
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.0027      .0089     -.0361      .0052

Preacher and Kelley (2011) Kappa-squared
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0233      .0251      .0006      .0866

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0170      .0317      .5352      .5925

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:
     2000

Level of confidence for all confidence intervals in output:
    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:
  70

NOTE: All standard errors for continuous outcome models are based on the HC3 estimator

------ END MATRIX -----




--
Sent from: http://spssx-discussion.1045642.n5.nabble.com/

=====================
To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: 70 cases deleted message :(

sara

Thank you Gene,

I realised that it was that PROCESS cannot handle copy and paste data. I went back to an earlier version and ran that with success. If you come across this sort of problem again with anyone ask if they have done the same.


Kind regards

Sara Stanley


From: Maguin, Eugene <[hidden email]>
Sent: Wednesday, 11 October 2017 1:18:05 AM
To: Sara Stanley; [hidden email]
Subject: RE: 70 cases deleted message :(
 

Hi Sara,

I’ve used the Hayes macro only a very few times so I’m not very familiar with it. But, looking through the output (Thank You!) I see that model summaries for observe and ptsdonly show dfs of 75 and 74, which seem right given an N of 77. I take that to mean that you had no missing data for the regression models.

 

You can replicate parts of the macro output using just the regression command. You need three unstandardized coefficients: neuroonl predicts observe (XM); observe predicts ptsdonly (MY); and neuroonl (XY), observe (MY2) predicts ptsdonly. First of all, you should get the same model and model summary numbers as in the output. You can also compute the indirect effect as XM*MY. The direct effect is XY. I bet your numbers will match Hayes.

 

However, I understand none of that explains the message. I think Hayes has a website. Look there.

Gene

 

 

From: Sara Stanley [mailto:[hidden email]]
Sent: Monday, October 9, 2017 5:57 PM
To: Maguin, Eugene <[hidden email]>; [hidden email]
Subject: Re: 70 cases deleted message :(

 

Hi Gene, yes I re-ran the descriptives and N matches. 

 

Kind regards

Sara Stanley


From: Maguin, Eugene <[hidden email]>
Sent: Tuesday, 10 October 2017 2:02:31 AM
To: Sara Stanley; [hidden email]
Subject: RE: 70 cases deleted message :(

 

Have you run descriptives on each variable in the analysis? And is the N for each variable the same and does that number match the number of cases in the analysis file?
Or,
Have you used the nvalid function to count the number of variables in the analysis with valid values and does a frequencies run of that result have a single value equal to the number of variables in the analysis and a frequency value equal to the number of cases in the analysis file?

Gene Maguin


-----Original Message-----
From: SPSSX(r) Discussion [[hidden email]] On Behalf Of sara
Sent: Monday, October 9, 2017 2:10 AM
To: [hidden email]
Subject: 70 cases deleted message :(

Hi, someone pls help me. I am trying to run a mediation and moderation but am getting the message below saying it has deleted 70 cases due to missing values. I have checked and rechecked the data and there is nothing missing.
Of course it is going to be insignificant if its only looking at 7 :(



Run MATRIX procedure:

**************** PROCESS Procedure for SPSS Release 2.041 ****************

        Written by Andrew F. Hayes, Ph.D.   http://www.afhayes.com

**************************************************************************
Model = 4
    Y = ptsdonly
    X = neuroonl
    M = observe

Sample size
         77

**************************************************************************
Outcome: observe

Model Summary
          R       R-sq          F        df1        df2          p
      .2700      .0729     4.5231     1.0000    75.0000      .0367

Model
              coeff         se          t          p       LLCI       ULCI
constant     4.0255      .3321    12.1219      .0000     3.3639     4.6870
neuroonl     -.2316      .1089    -2.1268      .0367     -.4485     -.0147

**************************************************************************
Outcome: ptsdonly

Model Summary
          R       R-sq          F        df1        df2          p
      .1002      .0100      .1894     2.0000    74.0000      .8279

Model
              coeff         se          t          p       LLCI       ULCI
constant      .7684      .6963     1.1036      .2733     -.6190     2.1558
observe      -.0733      .1200     -.6111      .5430     -.3125      .1658
neuroonl     -.0537      .1085     -.4945      .6224     -.2699      .1626

******************** DIRECT AND INDIRECT EFFECTS *************************

Direct effect of X on Y
     Effect         SE          t          p       LLCI       ULCI
     -.0537      .1085     -.4945      .6224     -.2699      .1626

Indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0170      .0254     -.0247      .0779

Partially standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0290      .0452     -.0499      .1253

Completely standardized indirect effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0240      .0367     -.0396      .1060

Ratio of indirect to total effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.4630     6.5527   -43.7991     -.0033

Ratio of indirect to direct effect of X on Y
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.3165     4.9203   -48.6823      .1019

R-squared mediation effect size (R-sq_med)
            Effect    Boot SE   BootLLCI   BootULCI
observe     -.0027      .0089     -.0361      .0052

Preacher and Kelley (2011) Kappa-squared
            Effect    Boot SE   BootLLCI   BootULCI
observe      .0233      .0251      .0006      .0866

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0170      .0317      .5352      .5925

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:
     2000

Level of confidence for all confidence intervals in output:
    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:
  70

NOTE: All standard errors for continuous outcome models are based on the HC3 estimator

------ END MATRIX -----




--
Sent from: http://spssx-discussion.1045642.n5.nabble.com/

=====================
To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD