Creating a Non-Self Mean/Proportion

classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

Creating a Non-Self Mean/Proportion

Chao Yawo
Hello,

I have created a summed scale of 2 dichotomous items coded originally 0 1.  The new variable now has values ranging from 0 to 2.

Since I am using a survey that I want to create summary measures like non-self mean or non-self proportions that represent other members of the respondents strata but excluding the respondent. 

Eg. I would want to know the proportion of the respondents strata:
-- who hold no negative attitudes - ie 0 in the summed scale;
-- who hold only one of the negative attitudes, ie, 1 in the summed scale as well as 
-- those members of the strata who hold both negative values or 2 in the summed scale.

Below are 20 cases, covering 3 different strata, as well as their respective values on the index variable of interest (i.e., score),  for your examination. What I want
is the count or proportion of each value of the index variable (i.e., score) in each strata.

Cluster Hhold#  Line#   Strata  score
46      7       1       1       0
122     20      4       1       0
122     6       2       1       1
46      1       1       1       2
122     11      2       1       1
122     6       1       1       0
122     16      6       2       0
46      13      1       2       1
46      12      1       2       2
122     17      1       2       0
122     8       2       2       1
46      13      3       2       1
122     5       2       2       0
46      6       3       3       1
122     16      2       3       0
122     15      1       3       2
46      4       2       3       0
46      19      3       3       1
122     4       2       3       0
46      20      4       3       2

So from this scratch data we can have the following distribution of the 3 score values by strata:

ScoreValues     Strata1    Strata2    Strata3   Total

0                         3            3              3           9
1                         2            3              2           7
2                         1            1              2           4

N                                                                 20

Thus, we can state that across all strata 9 individuals had a score of 0, 7 had a score of 1 and 4 had a score of 2 -- that is we aggregate or count each of the values of the index variable (Score) across or over all strata.  In this way I can describe the distribution of the scores over the strata.

I will be very grateful for any help in getting this programmed.


thanks - Cy