HELLO!
WOULD ANY ONE PLEASE HELP ME WITH THE FOLLOWING PROBLEM? I just want to take out all the zeros from the data given below (part of an observation). As you can notice one item is collected from three outlets (quotations), and it may happen that this item is priced only in one or two or all the three quotations. Now what I want is, as it is displayed below I want to extract all the non zero prices without disturbing the data. Please notice that the structure of the data view is as depicted below. I want to take out only the zero's, it could be from only one quotation or two or three conditionally. For example for the observations in blue color, item green pepper (price of the 9th month,p9), I want to takeout the 3rd quotation and keep the other two in order to compute average prices. Similarly, for the item couli flower since all the quotations are zero, I want to takeout the whole item for this specific month (p9). All I want is how to do such things using syntax (SPSS 11). Actually I have tried to do such things while the observations are arranged raw wise. By just writing " select if p(?) ne 0" . what if they are arranged as below? Is there any way to proceed? All the best! Itemno itemname quotation unit p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 03002 Cabbage 1 KG. 3.00 3.00 2.50 2.00 2.00 1.50 2.00 2.00 4.00 3.00 4.00 4.00 03002 Cabbage 2 KG. 2.00 2.50 2.00 3.00 2.00 3.00 3.00 2.00 3.50 4.00 4.00 4.00 03002 Cabbage 3 KG. 3.00 2.00 2.00 2.00 2.00 1.50 1.50 1.50 3.00 2.50 4.00 3.00 03003 Lettuce 1 KG. 4.50 4.00 5.00 3.00 4.00 6.00 7.00 8.00 8.00 8.00 7.00 5.00 03003 Lettuce 2 KG. 5.00 5.00 5.00 4.00 5.00 8.00 8.00 8.00 8.00 8.00 8.00 6.00 03003 Lettuce 3 KG. 5.00 4.00 5.00 5.00 4.00 6.00 6.50 7.00 7.00 7.00 8.00 5.00 03004 Carrot 1 KG. 5.00 6.00 6.00 4.00 4.00 5.00 5.00 5.00 10.00 6.00 7.00 6.00 03004 Carrot 2 KG. 5.00 5.00 5.00 4.00 5.00 5.00 6.00 6.00 10.00 8.00 7.00 6.00 03004 Carrot 3 KG. 6.00 5.00 5.00 5.00 4.00 4.50 4.50 5.00 10.00 6.00 6.00 5.00 03005 Potatos 1 KG. 5.00 5.00 7.00 5.00 6.00 7.00 7.50 7.00 7.00 5.00 4.00 8.00 03005 Potatos 2 KG. 5.00 5.00 7.00 6.00 7.00 7.00 7.50 8.00 7.00 5.00 6.00 6.00 03005 Potatos 3 KG. 5.00 5.00 7.00 5.00 6.00 7.00 7.00 8.50 7.00 3.50 5.00 6.00 03006 Tomatos 1 KG. 6.00 4.00 3.50 3.50 5.00 5.50 7.00 8.00 10.00 6.00 3.00 3.50 03006 Tomatos 2 KG. 6.00 4.00 3.50 3.50 6.50 7.00 7.00 9.00 10.00 5.50 3.00 3.00 03006 Tomatos 3 KG. 6.00 4.50 3.50 4.00 6.00 4.00 5.00 8.00 10.00 6.00 3.00 3.00 03007 Onions 1 KG. 7.50 6.00 4.00 3.50 4.00 4.50 5.00 4.00 6.00 6.00 7.00 6.00 03007 Onions 2 KG. 7.00 9.00 4.00 4.00 4.00 4.50 5.00 4.00 6.00 6.00 8.00 7.00 03007 Onions 3 KG. 7.00 6.00 4.50 4.50 4.00 3.50 4.00 5.50 7.00 5.50 8.00 6.00 03008 Garlic 1 KG. 30.00 40.00 30.00 15.00 20.00 20.00 40.00 35.00 40.00 40.00 25.00 30.00 03008 Garlic 2 KG. 30.00 25.00 25.00 20.00 20.00 20.00 30.00 35.00 30.00 22.00 30.00 40.00 03008 Garlic 3 KG. 30.00 30.00 25.00 25.00 20.00 12.00 30.00 32.00 40.00 24.00 30.00 28.00 03009 Pepper green 1 KG. 10.00 10.00 7.00 7.00 .00 10.00 10.00 8.00 12.00 12.00 10.00 14.00 03009 Pepper green 2 KG. 7.00 8.00 6.00 10.00 .00 11.00 12.00 9.00 10.00 12.00 14.00 10.00 03009 Pepper green 3 KG. 10.00 5.00 6.00 8.00 12.00 10.00 10.00 12.00 .00 11.00 .00 13.00 03011 Couli flower 1 KG. 8.00 15.00 10.00 8.00 .00 10.00 13.00 14.00 .00 .00 16.00 10.00 03011 Couli flower 2 KG. 8.00 10.00 8.00 7.00 10.00 .00 12.00 12.00 .00 .00 15.00 10.00 03011 Couli flower 3 KG. 6.00 10.00 5.00 7.00 8.00 .00 .00 .00 .00 .00 .00 .00 03012 Pumpkin 1 KG. 5.00 5.00 4.00 3.00 4.00 6.00 4.00 5.00 4.50 2.50 4.00 4.00 03012 Pumpkin 2 KG. 5.00 4.00 4.00 2.50 3.00 5.00 4.00 5.00 4.50 2.50 5.00 4.00 03012 Pumpkin 3 KG. 5.00 3.54 5.00 3.00 3.00 4.00 3.50 4.60 4.50 2.30 5.00 3.50 03013 Zukini 1 KG. 5.00 6.00 7.00 8.00 5.00 5.00 5.00 6.00 12.00 7.00 7.00 7.00 03013 Zukini 2 KG. 5.00 6.00 7.00 8.00 5.00 5.00 6.00 6.00 10.00 8.00 10.00 8.00 03013 Zukini 3 KG. 7.00 6.00 7.00 8.00 5.00 5.00 5.00 6.00 11.00 6.00 8.00 6.00 03017 Spinach 1 KG. 6.00 6.00 8.00 7.00 3.00 6.00 .00 .00 10.00 10.00 10.00 5.00 03017 Spinach 2 KG. 7.00 5.50 7.50 6.00 4.00 6.00 6.00 .00 8.00 .00 10.00 6.00 03017 Spinach 3 KG. 6.00 7.00 8.00 6.00 4.00 .00 .00 .00 8.00 .00 .00 .00 03018 Chikoria 1 KG. 4.00 5.00 5.00 4.00 .00 4.00 .00 .00 4.00 5.00 4.00 3.00 03018 Chikoria 2 KG. 4.00 3.50 4.00 4.00 .00 4.00 4.00 .00 6.00 5.00 5.00 5.00 03018 Chikoria 3 KG. 5.00 6.00 4.00 4.00 4.00 .00 .00 .00 .00 .00 5.00 3.00 03019 Cabbage 1 KG. 4.00 3.00 2.00 2.00 1.50 2.00 2.00 2.60 4.00 5.00 4.00 4.00 03019 Cabbage 2 KG. 3.00 3.00 3.00 2.00 2.00 2.50 2.00 2.50 3.50 5.00 4.00 4.00 03019 Cabbage 3 KG. 4.00 1.50 2.00 2.00 2.00 2.00 2.50 3.50 4.00 4.50 5.00 3.00 03020 Bamia 1 KG. 10.00 10.00 12.00 13.00 13.00 14.00 .00 20.00 12.00 10.00 12.00 .00 03020 Bamia 2 KG. 10.00 9.00 10.00 12.00 14.00 13.00 .00 15.00 12.00 12.00 12.00 10.00 03020 Bamia 3 KG. 10.00 10.00 10.00 13.00 13.00 .00 .00 .00 10.00 .00 12.00 16.00 04001 Bananas 1 KG. 4.00 4.00 4.00 3.50 4.00 3.50 3.50 3.50 4.50 4.00 4.00 5.00 04001 Bananas 2 KG. 4.00 3.80 4.00 3.50 3.00 3.50 3.50 4.00 4.00 4.00 4.50 4.50 04001 Bananas 3 KG. 4.00 4.00 4.00 3.50 3.50 3.50 3.50 4.00 4.00 4.00 4.50 4.50 04002 Oranges 1 KG. 8.00 9.00 11.00 11.00 11.00 13.00 14.00 12.00 13.00 12.00 10.00 9.00 04002 Oranges 2 KG. 8.00 9.50 11.00 12.00 12.00 14.00 13.00 14.00 12.00 12.00 10.00 9.00 04002 Oranges 3 KG. 8.00 9.00 11.00 12.00 12.00 13.00 12.00 13.00 12.00 11.00 8.00 9.00 04003 Lemons 1 KG. 10.00 10.00 15.00 14.00 .00 19.00 15.00 15.00 14.00 14.00 12.00 12.00 04003 Lemons 2 KG. 10.00 10.00 15.00 12.00 .00 20.00 18.00 12.00 12.00 13.00 15.00 12.00 04003 Lemons 3 KG. 15.00 10.00 8.00 13.00 16.00 20.00 16.00 13.00 12.00 12.00 13.00 12.00 04005 Papayas 1 KG. 7.00 8.00 7.00 4.50 6.00 6.00 6.00 8.00 11.00 11.00 12.00 10.00 04005 Papayas 2 KG. 7.00 6.50 6.00 6.00 6.00 6.00 6.50 6.00 10.00 10.00 13.00 10.00 04005 Papayas 3 KG. 8.00 6.00 6.00 5.50 6.00 5.00 6.00 7.50 10.00 12.00 12.00 9.00 04009 Apples 1 KG. 20.00 50.00 50.00 50.00 48.00 50.00 50.00 50.00 50.00 50.00 50.00 48.00 04009 Apples 2 KG. 20.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 04009 Apples 3 KG. 20.00 .00 50.00 50.00 50.00 50.00 50.00 .00 50.00 48.00 50.00 50.00 Nardos Ghebremedhin Nardos Ghebremedhin |
Hi
I see you've posted your question again, since nobody answered. The reason for not answering might be that the data you listed were all scrambled, the layout was difficult to understand. For future questions: if you order the data and present just a small sample (we don't need the whole dataset to get an idea of your question), you are more likely to get an answer. Anyway, I've tried to solve the puzzle, and this is my idea of the situation: DATA LIST LIST/Itemno(F5) itemname(A15) quotation(F8) unit(A3) p1 TO p12 (12 Comma8.1). BEGIN DATA 03002 'Cabbage' 1 KG. 3.0 3.0 2.5 2.0 2.0 1.5 2.0 2.0 4.0 3.0 4.0 4.0 03002 'Cabbage' 2 KG. 2.0 2.5 2.0 3.0 2.0 3.0 3.0 2.0 3.5 4.0 4.0 4.0 03002 'Cabbage' 3 KG. 3.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 3.0 2.5 4.0 3.0 03003 'Lettuce' 1 KG. 4.5 4.0 5.0 3.0 4.0 6.0 7.0 8.0 8.0 8.0 7.0 5.0 03003 'Lettuce' 2 KG. 5.0 5.0 5.0 4.0 5.0 8.0 8.0 8.0 8.0 8.0 8.0 6.0 03003 'Lettuce' 3 KG. 5.0 4.0 5.0 5.0 4.0 6.0 6.5 7.0 7.0 7.0 8.0 5.0 03004 'Carrot' 1 KG. 5.0 6.0 6.0 4.0 4.0 5.0 5.0 5.0 10.0 6.0 7.0 6.0 03004 'Carrot' 2 KG. 5.0 5.0 5.0 4.0 5.0 5.0 6.0 6.0 10.0 8.0 7.0 6.0 03004 'Carrot' 3 KG. 6.0 5.0 5.0 5.0 4.0 4.5 4.5 5.0 10.0 6.0 6.0 5.0 03005 'Potatos' 1 KG. 5.0 5.0 7.0 5.0 6.0 7.0 7.5 7.0 7.0 5.0 4.0 8.0 03005 'Potatos' 2 KG. 5.0 5.0 7.0 6.0 7.0 7.0 7.5 8.0 7.0 5.0 6.0 6.0 03005 'Potatos' 3 KG. 5.0 5.0 7.0 5.0 6.0 7.0 7.0 8.5 7.0 3.5 5.0 6.0 03006 'Tomatos' 1 KG. 6.0 4.0 3.5 3.5 5.0 5.5 7.0 8.0 10.0 6.0 3.0 3.5 03006 'Tomatos' 2 KG. 6.0 4.0 3.5 3.5 6.5 7.0 7.0 9.0 10.0 5.5 3.0 3.0 03006 'Tomatos' 3 KG. 6.0 4.5 3.5 4.0 6.0 4.0 5.0 8.0 10.0 6.0 3.0 3.0 03007 'Onions' 1 KG. 7.5 6.0 4.0 3.5 4.0 4.5 5.0 4.0 6.0 6.0 7.0 6.0 03007 'Onions' 2 KG. 7.0 9.0 4.0 4.0 4.0 4.5 5.0 4.0 6.0 6.0 8.0 7.0 03007 'Onions' 3 KG. 7.0 6.0 4.5 4.5 4.0 3.5 4.0 5.5 7.0 5.5 8.0 6.0 03008 'Garlic' 1 KG. 30.0 40.0 30.0 15.0 20.0 20.0 40.0 35.0 40.0 40.0 25.0 30.0 03008 'Garlic' 2 KG. 30.0 25.0 25.0 20.0 20.0 20.0 30.0 35.0 30.0 22.0 30.0 40.0 03008 'Garlic' 3 KG. 30.0 30.0 25.0 25.0 20.0 12.0 30.0 32.0 40.0 24.0 30.0 28.0 03009 'Pepper green' 1 KG. 10.0 10.0 7.0 7.0 .0 10.0 10.0 8.0 12.0 12.0 10.0 14.0 03009 'Pepper green' 2 KG. 7.0 8.0 6.0 10.0 .0 11.0 12.0 9.0 10.0 12.0 14.0 10.0 03009 'Pepper green' 3 KG. 10.0 5.0 6.0 8.0 12.0 10.0 10.0 12.0 .0 11.0 .0 13.0 03011 'Couli flower' 1 KG. 8.0 15.0 10.0 8.0 .0 10.0 13.0 14.0 .0 .0 16.0 10.0 03011 'Couli flower' 2 KG. 8.0 10.0 8.0 7.0 10.0 .0 12.0 12.0 .0 .0 15.0 10.0 03011 'Couli flower' 3 KG. 6.0 10.0 5.0 7.0 8.0 .0 .0 .0 .0 .0 .0 .0 03012 'Pumpkin' 1 KG. 5.0 5.0 4.0 3.0 4.0 6.0 4.0 5.0 4.5 2.5 4.0 4.0 03012 'Pumpkin' 2 KG. 5.0 4.0 4.0 2.5 3.0 5.0 4.0 5.0 4.5 2.5 5.0 4.0 03012 'Pumpkin' 3 KG. 5.0 3.5 5.0 3.0 3.0 4.0 3.5 4.6 4.5 2.3 5.0 3.5 03013 'Zukini' 1 KG. 5.0 6.0 7.0 8.0 5.0 5.0 5.0 6.0 12.0 7.0 7.0 7.0 03013 'Zukini' 2 KG. 5.0 6.0 7.0 8.0 5.0 5.0 6.0 6.0 10.0 8.0 10.0 8.0 03013 'Zukini' 3 KG. 7.0 6.0 7.0 8. 0 5.0 5.0 5.0 6.0 11. 6.0 8.0 6.0 END DATA. I hope my interpretation is correct (it took some time and I had to reorder a lot of lines). As you see, only a sample of your data are presented in this test dataset. If I understand you correctly, you want to replace the ".0" by missing values: RECODE p1 TO p12 (0=SYSMIS) . EXECUTE . Now you can proceed with any statistical analysis you want. If this is not what you need, please write again and explain your problem a bit more. HTH, Marta Garcia-Granero, PhD Statistician NG> WOULD ANY ONE PLEASE HELP ME WITH THE FOLLOWING PROBLEM? NG> I just want to take out all the zeros from the data given below (part of NG> an observation). As you can notice one item is collected from three NG> outlets (quotations), and it may happen that this item is priced only in NG> one or two or all the three quotations. Now what I want is, as it is NG> displayed below I want to extract all the non zero prices without NG> disturbing the data. Please notice that the structure of the data view NG> is as depicted below. I want to take out only the zero's, it could be NG> from only one quotation or two or three conditionally. For example for NG> the observations in blue color, item green pepper (price of the 9th NG> month,p9), I want to takeout the 3rd quotation and keep the other two in NG> order to compute average prices. Similarly, for the item couli flower NG> since all the quotations are zero, I want to takeout the whole item for NG> this specific month (p9). NG> All I want is how to do such things using syntax (SPSS 11). NG> Actually I have tried to do such things while the observations are NG> arranged raw wise. By just writing " select if p(?) ne 0" . what if they NG> are arranged as below? Is there any way to proceed? NG> All the best! NG> Itemno itemname quotation unit NG> p1 p2 p3 p4 p5 p6 p7 NG> p8 p9 p10 p11 p12 NG> 03002 Cabbage 1 KG. NG> 3.00 3.00 2.50 2.00 2.00 1.50 2.00 NG> 2.00 4.00 3.00 4.00 4.00 NG> 03002 Cabbage 2 KG. NG> 2.00 2.50 2.00 3.00 2.00 3.00 3.00 NG> 2.00 3.50 4.00 4.00 4.00 NG> 03002 Cabbage 3 KG. NG> 3.00 2.00 2.00 2.00 2.00 1.50 1.50 NG> 1.50 3.00 2.50 4.00 3.00 NG> 03003 Lettuce 1 KG. NG> 4.50 4.00 5.00 3.00 4.00 6.00 7.00 NG> 8.00 8.00 8.00 7.00 5.00 NG> 03003 Lettuce 2 KG. NG> 5.00 5.00 5.00 4.00 5.00 8.00 8.00 NG> 8.00 8.00 8.00 8.00 6.00 NG> 03003 Lettuce 3 KG. NG> 5.00 4.00 5.00 5.00 4.00 6.00 6.50 NG> 7.00 7.00 7.00 8.00 5.00 NG> 03004 Carrot 1 KG. NG> 5.00 6.00 6.00 4.00 4.00 5.00 5.00 NG> 5.00 10.00 6.00 7.00 6.00 NG> 03004 Carrot 2 KG. NG> 5.00 5.00 5.00 4.00 5.00 5.00 6.00 NG> 6.00 10.00 8.00 7.00 6.00 NG> 03004 Carrot 3 KG. NG> 6.00 5.00 5.00 5.00 4.00 4.50 4.50 NG> 5.00 10.00 6.00 6.00 5.00 NG> 03005 Potatos 1 KG. NG> 5.00 5.00 7.00 5.00 6.00 7.00 7.50 NG> 7.00 7.00 5.00 4.00 8.00 NG> 03005 Potatos 2 KG. NG> 5.00 5.00 7.00 6.00 7.00 7.00 7.50 NG> 8.00 7.00 5.00 6.00 6.00 NG> 03005 Potatos 3 KG. NG> 5.00 5.00 7.00 5.00 6.00 7.00 7.00 NG> 8.50 7.00 3.50 5.00 6.00 NG> 03006 Tomatos 1 KG. NG> 6.00 4.00 3.50 3.50 5.00 5.50 7.00 NG> 8.00 10.00 6.00 3.00 3.50 NG> 03006 Tomatos 2 KG. NG> 6.00 4.00 3.50 3.50 6.50 7.00 7.00 NG> 9.00 10.00 5.50 3.00 3.00 NG> 03006 Tomatos 3 KG. NG> 6.00 4.50 3.50 4.00 6.00 4.00 5.00 NG> 8.00 10.00 6.00 3.00 3.00 NG> 03007 Onions 1 KG. NG> 7.50 6.00 4.00 3.50 4.00 4.50 5.00 NG> 4.00 6.00 6.00 7.00 6.00 NG> 03007 Onions 2 KG. NG> 7.00 9.00 4.00 4.00 4.00 4.50 5.00 NG> 4.00 6.00 6.00 8.00 7.00 NG> 03007 Onions 3 KG. NG> 7.00 6.00 4.50 4.50 4.00 3.50 4.00 NG> 5.50 7.00 5.50 8.00 6.00 NG> 03008 Garlic 1 KG. NG> 30.00 40.00 30.00 15.00 20.00 20.00 40.00 35.00 NG> 40.00 40.00 25.00 30.00 NG> 03008 Garlic 2 KG. NG> 30.00 25.00 25.00 20.00 20.00 20.00 30.00 35.00 NG> 30.00 22.00 30.00 40.00 NG> 03008 Garlic 3 KG. NG> 30.00 30.00 25.00 25.00 20.00 12.00 30.00 32.00 NG> 40.00 24.00 30.00 28.00 NG> 03009 Pepper green 1 KG. NG> 10.00 10.00 7.00 7.00 .00 10.00 10.00 8.00 NG> 12.00 12.00 10.00 14.00 NG> 03009 Pepper green 2 KG. NG> 7.00 8.00 6.00 10.00 .00 11.00 12.00 9.00 NG> 10.00 12.00 14.00 10.00 NG> 03009 Pepper green 3 KG. NG> 10.00 5.00 6.00 8.00 12.00 10.00 10.00 12.00 NG> .00 11.00 .00 13.00 NG> 03011 Couli flower 1 KG. NG> 8.00 15.00 10.00 8.00 .00 10.00 13.00 14.00 NG> .00 .00 16.00 10.00 NG> 03011 Couli flower 2 KG. NG> 8.00 10.00 8.00 7.00 10.00 .00 12.00 12.00 NG> .00 .00 15.00 10.00 NG> 03011 Couli flower 3 KG. NG> 6.00 10.00 5.00 7.00 8.00 .00 .00 NG> .00 .00 .00 .00 .00 NG> 03012 Pumpkin 1 KG. NG> 5.00 5.00 4.00 3.00 4.00 6.00 4.00 NG> 5.00 4.50 2.50 4.00 4.00 NG> 03012 Pumpkin 2 KG. NG> 5.00 4.00 4.00 2.50 3.00 5.00 4.00 NG> 5.00 4.50 2.50 5.00 4.00 NG> 03012 Pumpkin 3 KG. NG> 5.00 3.54 5.00 3.00 3.00 4.00 3.50 NG> 4.60 4.50 2.30 5.00 3.50 NG> 03013 Zukini 1 KG. NG> 5.00 6.00 7.00 8.00 5.00 5.00 5.00 NG> 6.00 12.00 7.00 7.00 7.00 NG> 03013 Zukini 2 KG. NG> 5.00 6.00 7.00 8.00 5.00 5.00 6.00 NG> 6.00 10.00 8.00 10.00 8.00 NG> 03013 Zukini 3 KG. NG> 7.00 6.00 7.00 8.00 5.00 5.00 5.00 NG> 6.00 11.00 6.00 8.00 6.00 NG> 03017 Spinach 1 KG. NG> 6.00 6.00 8.00 7.00 3.00 6.00 .00 NG> .00 10.00 10.00 10.00 5.00 NG> 03017 Spinach 2 KG. NG> 7.00 5.50 7.50 6.00 4.00 6.00 6.00 NG> .00 8.00 .00 10.00 6.00 NG> 03017 Spinach 3 KG. NG> 6.00 7.00 8.00 6.00 4.00 .00 .00 NG> .00 8.00 .00 .00 .00 NG> 03018 Chikoria 1 KG. NG> 4.00 5.00 5.00 4.00 .00 4.00 .00 NG> .00 4.00 5.00 4.00 3.00 NG> 03018 Chikoria 2 KG. NG> 4.00 3.50 4.00 4.00 .00 4.00 4.00 NG> .00 6.00 5.00 5.00 5.00 NG> 03018 Chikoria 3 KG. NG> 5.00 6.00 4.00 4.00 4.00 .00 .00 NG> .00 .00 .00 5.00 3.00 NG> 03019 Cabbage 1 KG. NG> 4.00 3.00 2.00 2.00 1.50 2.00 2.00 NG> 2.60 4.00 5.00 4.00 4.00 NG> 03019 Cabbage 2 KG. NG> 3.00 3.00 3.00 2.00 2.00 2.50 2.00 NG> 2.50 3.50 5.00 4.00 4.00 NG> 03019 Cabbage 3 KG. NG> 4.00 1.50 2.00 2.00 2.00 2.00 2.50 NG> 3.50 4.00 4.50 5.00 3.00 NG> 03020 Bamia 1 KG. NG> 10.00 10.00 12.00 13.00 13.00 14.00 .00 20.00 NG> 12.00 10.00 12.00 .00 NG> 03020 Bamia 2 KG. NG> 10.00 9.00 10.00 12.00 14.00 13.00 .00 15.00 NG> 12.00 12.00 12.00 10.00 NG> 03020 Bamia 3 KG. NG> 10.00 10.00 10.00 13.00 13.00 .00 .00 .00 NG> 10.00 .00 12.00 16.00 NG> 04001 Bananas 1 KG. NG> 4.00 4.00 4.00 3.50 4.00 3.50 3.50 NG> 3.50 4.50 4.00 4.00 5.00 NG> 04001 Bananas 2 KG. NG> 4.00 3.80 4.00 3.50 3.00 3.50 3.50 NG> 4.00 4.00 4.00 4.50 4.50 NG> 04001 Bananas 3 KG. NG> 4.00 4.00 4.00 3.50 3.50 3.50 3.50 NG> 4.00 4.00 4.00 4.50 4.50 NG> 04002 Oranges 1 KG. NG> 8.00 9.00 11.00 11.00 11.00 13.00 14.00 12.00 NG> 13.00 12.00 10.00 9.00 NG> 04002 Oranges 2 KG. NG> 8.00 9.50 11.00 12.00 12.00 14.00 13.00 14.00 NG> 12.00 12.00 10.00 9.00 NG> 04002 Oranges 3 KG. NG> 8.00 9.00 11.00 12.00 12.00 13.00 12.00 13.00 NG> 12.00 11.00 8.00 9.00 NG> 04003 Lemons 1 KG. NG> 10.00 10.00 15.00 14.00 .00 19.00 15.00 15.00 NG> 14.00 14.00 12.00 12.00 NG> 04003 Lemons 2 KG. NG> 10.00 10.00 15.00 12.00 .00 20.00 18.00 12.00 NG> 12.00 13.00 15.00 12.00 NG> 04003 Lemons 3 KG. NG> 15.00 10.00 8.00 13.00 16.00 20.00 16.00 13.00 NG> 12.00 12.00 13.00 12.00 NG> 04005 Papayas 1 KG. NG> 7.00 8.00 7.00 4.50 6.00 6.00 6.00 NG> 8.00 11.00 11.00 12.00 10.00 NG> 04005 Papayas 2 KG. NG> 7.00 6.50 6.00 6.00 6.00 6.00 6.50 NG> 6.00 10.00 10.00 13.00 10.00 NG> 04005 Papayas 3 KG. NG> 8.00 6.00 6.00 5.50 6.00 5.00 6.00 NG> 7.50 10.00 12.00 12.00 9.00 NG> 04009 Apples 1 KG. NG> 20.00 50.00 50.00 50.00 48.00 50.00 50.00 50.00 NG> 50.00 50.00 50.00 48.00 NG> 04009 Apples 2 KG. NG> 20.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 NG> 50.00 50.00 50.00 50.00 NG> 04009 Apples 3 KG. NG> 20.00 .00 50.00 50.00 50.00 50.00 50.00 .00 NG> 50.00 48.00 50.00 50.00 NG> Nardos Ghebremedhin NG> Nardos Ghebremedhin NG> __________ Información de NOD32, revisión 1.1626 (20060626) __________ NG> Este mensaje ha sido analizado con NOD32 antivirus system NG> http://www.nod32.com -- Saludos, Marta mailto:[hidden email] |
In reply to this post by Nardos Ghebremedhin
At 01:42 AM 6/27/2006, Nardos Ghebremedhin wrote:
>WOULD ANY ONE PLEASE HELP ME WITH THE FOLLOWING PROBLEM? > >I just want to take out all the zeros from the data given below Did you miss the previous response? >>Reply-To: Richard Ristow <[hidden email]> >>Subject: Re: Eliminating zeroes from data >>Comments: To: Nardos Ghebremedhin <[hidden email]> >>To: [hidden email] It was sent to you and to the list. I'd changed the subject line from "how to proceed with such things!", which wasn't very informative. As you'll see, my recommendation agrees with Marta's. |
Free forum by Nabble | Edit this page |