Fwd: Confusion with Linear Mixed Models - Repeated Measures

classic Classic list List threaded Threaded
2 messages Options
Reply | Threaded
Open this post in threaded view
|

Fwd: Confusion with Linear Mixed Models - Repeated Measures

Mark Webb-5

Data






Repeated - before/after with same/matching respondents.

Data in Long Format as required by LMM SPSS version 18.









Aim






Has there been a significant improvement in the Education Index From T1 to T2 ?








Time = T1 T2





EduIndex = Education Attitude Scale - range 0-1


Id = Matching students




















MIXED EduIndex BY Time




  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, 
    ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Time | SSTYPE(3)




  /METHOD=REML





  /PRINT=R SOLUTION TESTCOV



  /REPEATED=Time | SUBJECT(Id) COVTYPE(UN).


















Estimates of Fixed Effectsb






Parameter Estimate Std. Error df t Sig.









Intercept .953282 .004487 209.095 212.432 .000

[Time=1] .006556 .006002 199.520 1.092 .276

[Time=2] 0 0 . . .









Conclusion





 0.276 is greater than 0.05 [95% Confidence Interval] so no significant change in eduindex over time period.
Is this correct ?





################################################################################
Now I want to see if there is any significant difference between Schools [1 numeric varaible 8 schools]
How do I do this ? 





Do I change





  /FIXED=Time | SSTYPE(3)




to






  /FIXED=School | SSTYPE(3)












i.e.






MIXED EduIndex BY School




  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, 
    ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=School | SSTYPE(3)




  /METHOD=REML





  /PRINT=SOLUTION





  /REPEATED=Time | SUBJECT(Id) COVTYPE(UN).










Here is the output which I struggle to interpret.


Why is school 8 output redundant ?



How do I determine which schools have improved/declined & which represent
significant changes?













Estimates of Fixed Effectsb          
Parameter Estimate Std. Error df t Sig.    
               
Intercept .967253 .009116 194.946 106.106 .000    
[School=1] .006861 .011456 197.440 .599 .550    
[School=2] -.023379 .012097 193.892 -1.933 .055    
[School=3] -.025070 .013936 192.233 -1.799 .074    
[School=4] -.022792 .011507 193.454 -1.981 .049    
[School=5] -.022165 .017332 195.677 -1.279 .202    
[School=6] -.000200 .012465 191.551 -.016 .987    
[School=7] -.008814 .012479 195.325 -.706 .481    
[School=8] 0 0 . . .    
















--
Mark Webb

Line +27 (21) 786 4379
Cell +27 (72) 199 1000
Fax to email +27 (86) 5513075
Skype  webbmark
Email  [hidden email]
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Confusion with Linear Mixed Models - Repeated Measures

Ryan
Mark,
 
I visualize your data set in veritcal format as follows:
 
ID   School    Time   EduIndex
1       1            1     .45 
1       1            2     .24   
2       1            1     .89  
2       1            2     .54
.
.
.
10      2            1    .24
10      2            2    .31
.
.
.
 
If you were to treat time as a categorical variable, then one possible parameterization would be:
 
MIXED EduIndex BY School Time
  /FIXED=School Time School*Time | SSTYPE(3)
  /METHOD=REML
  /PRINT=SOLUTION
  /REPEATED=Time | SUBJECT(ID) COVTYPE(CS).
 
You can invoke the TEST subcommand to examine if the mean change from time 1 to time 2 is significantly different between each pair of schools. Here are a couple of examples, which assume that you have two time pionts and 8 schools:
 
/TEST = 'Difference in Mean Change Between School 1 and 2'
             School*Time -1  1 
                                 1 -1
                                 0  0
                                 0  0
                                 0  0
                                 0  0
                                 0  0
                                 0  0
 
/TEST = 'Difference in Mean Change Between School 1 and 3'
             School*Time -1  1 
                                 0  0
                                 1 -1
                                 0  0
                                 0  0
                                 0  0
                                 0  0
                                 0  0
 
 
I have many questions about your design and data, but instead getting into the weeds, I decided to just narrow in on one of your questions. Having said that, one question that I just can't let go of is the term "matching" that you used a couple times in your post. Exactly what do you mean by "matching"? Are you referring to the fact that post scores of individuals are matched to their prescores? Or were subjects actually matched on key characteristics?
 
Ryan
On Tue, Nov 9, 2010 at 5:19 AM, Mark Webb <[hidden email]> wrote:

Data






Repeated - before/after with same/matching respondents.

Data in Long Format as required by LMM SPSS version 18.









Aim






Has there been a significant improvement in the Education Index From T1 to T2 ?








Time = T1 T2





EduIndex = Education Attitude Scale - range 0-1


Id = Matching students




















MIXED EduIndex BY Time




  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, 
    ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=Time | SSTYPE(3)




  /METHOD=REML





  /PRINT=R SOLUTION TESTCOV



  /REPEATED=Time | SUBJECT(Id) COVTYPE(UN).


















Estimates of Fixed Effectsb






Parameter Estimate Std. Error df t Sig.









Intercept .953282 .004487 209.095 212.432 .000

[Time=1] .006556 .006002 199.520 1.092 .276

[Time=2] 0 0 . . .









Conclusion





 0.276 is greater than 0.05 [95% Confidence Interval] so no significant change in eduindex over time period.
Is this correct ?





################################################################################
Now I want to see if there is any significant difference between Schools [1 numeric varaible 8 schools]
How do I do this ? 





Do I change





  /FIXED=Time | SSTYPE(3)




to






  /FIXED=School | SSTYPE(3)












i.e.






MIXED EduIndex BY School




  /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0, 
    ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
  /FIXED=School | SSTYPE(3)




  /METHOD=REML





  /PRINT=SOLUTION





  /REPEATED=Time | SUBJECT(Id) COVTYPE(UN).










Here is the output which I struggle to interpret.


Why is school 8 output redundant ?



How do I determine which schools have improved/declined & which represent
significant changes?













Estimates of Fixed Effectsb          
Parameter Estimate Std. Error df t Sig.    
               
Intercept .967253 .009116 194.946 106.106 .000    
[School=1] .006861 .011456 197.440 .599 .550    
[School=2] -.023379 .012097 193.892 -1.933 .055    
[School=3] -.025070 .013936 192.233 -1.799 .074    
[School=4] -.022792 .011507 193.454 -1.981 .049    
[School=5] -.022165 .017332 195.677 -1.279 .202    
[School=6] -.000200 .012465 191.551 -.016 .987    
[School=7] -.008814 .012479 195.325 -.706 .481    
[School=8] 0 0 . . .    
















--
Mark Webb

Line +27 (21) 786 4379
Cell +27 (72) 199 1000
Fax to email +27 (86) 5513075
Skype  webbmark
Email  [hidden email]
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD