Query about syntax for Schmidt-Leiman Transformation

classic Classic list List threaded Threaded
2 messages Options
Reply | Threaded
Open this post in threaded view
|

Query about syntax for Schmidt-Leiman Transformation

Matt Fuller-2
Hello all.

I am currently conducting a Schmidt-Leiman transformation for  
higher-order factor analysis and am having some difficulty obtaining  
the output. My use and knowledge of syntax in SPSS is limited and I  
thought, as a first resort, I may inquire here if anyone can spot the  
problem in my syntax (presented below and attached). [Note: this  
syntax, derived from an article by Wolff and Preising (2005) in  
Behaviour Research Methods works perfectly for their example but  
incompletely for my own.]

Unfortunately, when I run this syntax, the output only gives me  
communalities for the first 20 variables. I am not sure why this is  
the case.

Help greatly appreciated, Matt.



* Schmid-Leiman Solution for 2 level higher-order Factor analysis.
Matrix.
* ENTER YOUR SPECIFICATIONS HERE.
* Enter first-order pattern matrix.
Compute F1={0.929768979, 0.070437071, 0.023342211, -0.031003209, 0.077697724;
                       
0.893721341, -0.037590435, 0.014236436, -0.123748484, 0.105052139;
                       
0.83678639, -0.041437465, 0.042134208, 0.003487664, -0.004795598;
                       
0.832440766, 0.048623171, 0.105489561, -0.040659122, 0.085502643;
                 0.829409735, 0.090478409, -0.039036501, 0.034094719, 0.150942017;
                 0.808408521, -0.05030782, 0.052183572, 0.059380664, -0.017087293;
                 0.794174772, -0.029592837, 0.12433212, 0.03268405, -0.10265853;
                 0.738278449, 0.141841983, 0.00323001, -0.121982791, -0.108192362;
                 0.715482804, 0.011483825, -0.027642039, -0.008551353, -0.211650475;
                 0.704568156, 0.016670586, 0.056855586, 0.045006538, -0.212703309;
                 0.682878309, -0.009770111, 0.28405449, 0.068257407, -0.05435771;
                 0.679774442, -0.062700096, 0.095278675, 0.051087949, -0.086514957;
                 0.672669127, 0.070741455, 0.11499865, -0.046386447, -0.221176056;
                 0.667228697, 0.071202062, -0.031999554, 0.147478398, -0.023661933;
                 0.621018553, 0.091820715, 0.221134258, 0.100021381, -0.071477797;
                 0.614184439, 0.066835344, 0.087838398, 0.080808737, -0.199796359;
          0.612762808, 0.095447456, 0.034918515, 0.110281467, 0.08462564;
                 0.596102644, -0.03095136, -0.00201852, 0.061536698, -0.33562254;
                 0.549925428, 0.025973094, -0.005067543, 0.131895808, 0.144016083;
                 0.536093647, 0.141448891, 0.146640274, 0.124170319, -0.024626198;
                 0.506088992, -0.033666666, -0.001669395, 0.046309258, -0.454507204;
                 0.498075141, 0.013872309, -0.10885918, 0.077671257, -0.398873637;
                 0.491259386, 0.070648257, 0.362903736, 0.168862314, 0.078222301;
                 0.473466629, 0.005303758, 0.103551278, 0.135820203, -0.117243861;
                 0.451181677, 0.148019961, 0.3063622, 0.104236606, -0.160420059;
                 0.44949463, 0.061865916, 0.152604201, 0.118073339, -0.259274022;
                 0.448271527, 0.057276975, 0.069429094, 0.196138046, -0.302385835;
                 0.441278082, -0.016732654, -0.165357102, 0.050981186, -0.105594824;
                 0.372059316, 0.143062588, 0.149719062, 0.084850727, -0.233577388;
                 0.294799116, 0.019743931, 0.205908903, -0.127051608, -0.194869273;
                 0.291303209, 0.175314589, -0.138150987, -0.052966533, -0.276976361;
                 0.051340263, 0.859971633, -0.028102002, -0.181239335, -0.018060006;
                 0.049269878, 0.798633564, -0.151224086, 0.283981411, 0.014180584;
                 0.112522688, 0.79019034, -0.299883643, -0.019312022, 0.091239042;
                -0.062649107, 0.784424706, -0.077893563, 0.122824531, 0.07277096;
                 0.201876902, 0.738874829, 0.028276781, -0.282121548, -0.001817608;
                 0.007256071, 0.705496997, 0.038491515, 0.130323939, -0.081993413;
                 0.017346303, 0.681977416, -0.012270661, 0.115874427, -0.135846956;
                 0.015079376, 0.651009563, 0.120112376, 0.076795637, -0.069999399;
                 0.028556892, 0.591885068, 0.294061875, -0.100796783, -0.178412997;
                 0.113671764, 0.573156102, -0.018546419, -0.016499915, 0.169393136;
                 0.059109467, 0.560073187, 0.099376298, -0.076723588, -0.208692235;
                 0.040704652, 0.552216182, 0.188498422, 0.222664922, -0.27312236;
                -0.110329328, 0.548895367, 0.17999264, -0.006143955, 0.134072686;
                 0.067940487, 0.547146645, 0.142229481, 0.2147295, -0.211515004;
                -0.013266606, 0.545361119, 0.098026072, 0.45409551, -0.031491936;
                 0.032362421, 0.516921256, 0.187754056, 0.220293264, -0.294936137;
                 0.012235931, 0.48714161, 0.486612055, -0.21474517, -0.025465214;
                -0.027741092, 0.462345113, 0.085130282, 0.082813962, -0.071520071;
                -0.031145186, 0.459836876, 0.13108185, 0.209562293, -0.294059431;
                 0.094452022, 0.437925799, 0.259173827, -0.013808867, -0.224961573;
                 0.130324169, 0.41607347, 0.08525794, 0.412044073, -0.172559454;
                 0.089138142, 0.332628804, -0.051500194, 0.175731055, 0.046435234;
                -0.062680791, -0.044870429, 0.701278638, 0.004228009, -0.094198362;
                 0.133322558, -0.074077107, 0.645859721, 0.067403475, -0.039936534;
                 0.066853586, -0.019079326, 0.603015446, 0.184859791, 0.095156317;
                 0.180336801, 0.038546973, 0.556426526, 0.046591223, 0.114189739;
                 0.036385519, 0.237337158, 0.551161305, -0.135096911, 0.016930026;
                 0.138864563, -0.060552653, 0.550073135, 0.134649776, -0.002154831;
                       
0.083159561, -0.00494762, 0.504456239, 0.056695359, -0.034014707;
                 0.019762849, 0.19906486, 0.449226362, 0.272710713, -0.245670643;
                -0.018739548, 0.438209595, 0.444921451, -0.072096516, 0.084559305;
                -0.059733988, 0.251261, 0.435869984, 0.177897505, -0.108978081;
                 0.185749172, 0.200288252, 0.408960146, -0.035042903, -0.268257666;
                 0.057774156, 0.112368687, 0.305586574, 0.125707757, -0.206850512;
                 0.234575412, -0.070695517, 0.291011426, -0.21881141, -0.263419624;
                 0.205664292, -0.038696033, 0.239546927, 0.068741834, -0.233603453;
                 0.131522618, 0.11775963, 0.096545341, 0.594010619, -0.024543746;
                 0.180979343, -0.023561219, 0.150279397, 0.559304749, 0.066433014;
                 0.2576374, 0.066656784, 0.0853576, 0.541330615, -0.039216255;
                 0.425413272, 0.049384441, -0.033640897, -0.007143601, -0.529796375;
                 0.278412667, 0.14879198, 0.119739896, 0.106365903, -0.489063961;
                 0.306119857, 0.009130316, 0.097404029, 0.072160541, -0.478959818;
                 0.373257768, 0.144919141, 0.122385527, 0.084732005, -0.411342454;
                 0.258747111, -0.118269424, 0.284303916, -0.075041911, -0.395704052;
                 0.239899202, 0.134491616, -0.041590461, 0.183603276, -0.285043821}.
* enter first-order variable names.
compute varname={"v001"; "v002"; "v003"; "v004"; "v005"; "v006";  
"v007"; "v008"; "v009"; "v010";
"v011"; "v012"; "v013"; "v014"; "v015"; "v016"; "v017"; "v018";  
"v019"; "v020"; "v021"; "v022";
"v023"; "v024"; "v025"; "v026"; "v027"; "v028"; "v029"; "v030";  
"v031"; "v032"; "v033"; "v034";
"v035"; "v036"; "v037"; "v038"; "v039"; "v040"; "v041"; "v042";  
"v043"; "v044"; "v045"; "v046";
"v047"; "v048"; "v049"; "v050"; "v051"; "v052"; "v053"; "v054";  
"v055"; "v056"; "v057"; "v058";
"v059"; "v060"; "v061"; "v062"; "v063"; "v064"; "v065"; "v066";  
"v067"; "v068"; "v069"; "v070";
"v071"; "v072"; "v073"; "v074"; "v075"; "v076"}.
*enter first-order factor names.
compute f1name={"factor1", "factor2", "factor3", "factor4", "factor5"}.
* enter second-order factor loadings.
Compute F2={0.828; -.624; .587; .505; .441}.
*enter second-order factor names.
compute f2name={"General1"}.

* END OF INPUT.
print F1/Format"f5.3" /rnames=varname /cnames=f1name.
compute C1=ncol(F1).
print F2/format"f5.3" /rnames=f1name /cnames=f2name.
compute C2=ncol(F2).
Compute zw1=1-rssq(f2).
Compute Unique=Mdiag (zw1).
compute zw1=sqrt(unique).
compute B={F2,zw1}.
Compute SLP=F1*B.
compute hrtot=rssq(SLP).
compute C1end=C1+C2.
compute C1start=C2+1.
compute zw2=slp(:,C1start:C1end).
compute HR1st=rssq(zw2).
compute zw3=SLP(:,1:C2).
compute HR2nd=rssq(zw3).
compute HCtot=cssq(SLP).
compute Htot=mssq(SLP).
compute Htot100=HCtot &/ Htot.
compute Htotsum=msum(HCtot) / Htot.
compute zw4=Htot100(1:C2).
compute zw5=Htot100(C1start:C1end).
compute EXG=rsum(zw4).
compute EXF=rsum(zw5).
compute results1={SLP, HRtot, HR2nd, HR1st}.
compute slpname={f2name, f1name, "H² total", "H² G", "H² 1st"}.
print results1/ format "f5.3" /title="factor loadings of Schmid-Leiman  
Solution and h²" /rnames = varname /cnames=slpname.
compute results2={HCtot, Htot;
                  Htot100, Htotsum}.
compute fixedn2={f2name,f1name,"total"}.
print results2 /format"f5.3"/ title="sum of squared loadings"  
/rlabels="H²" "%" /cnames=fixedn2.
print EXG /format"f5.3"/ title="percentage of exracted variance  
explained by general factors (%)".
print EXF /format"f5.3"/ title="percentage of extracted variance  
explained by first order factors (%)".
        End Matrix.




Syntax for KvT2.sps (9K) Download Attachment
Reply | Threaded
Open this post in threaded view
|

Re: Query about syntax for Schmidt-Leiman Transformation

Spousta Jan
Well, the first suspicion is that the output is complete but you do not see the hidden rows because the output text is too long. SPSS hides text outputs beyond a limit.

Try to double click the output in the output window. It opens in a window and you can slide through the whole text. Another possibility is to select it and copy-paste into Word.

HTH

Jan

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of Matt Fuller
Sent: Wednesday, October 08, 2008 9:37 AM
To: [hidden email]
Subject: Query about syntax for Schmidt-Leiman Transformation

Hello all.

I am currently conducting a Schmidt-Leiman transformation for higher-order factor analysis and am having some difficulty obtaining the output. My use and knowledge of syntax in SPSS is limited and I thought, as a first resort, I may inquire here if anyone can spot the problem in my syntax (presented below and attached). [Note: this syntax, derived from an article by Wolff and Preising (2005) in Behaviour Research Methods works perfectly for their example but incompletely for my own.]

Unfortunately, when I run this syntax, the output only gives me communalities for the first 20 variables. I am not sure why this is the case.

Help greatly appreciated, Matt.



* Schmid-Leiman Solution for 2 level higher-order Factor analysis.
Matrix.
* ENTER YOUR SPECIFICATIONS HERE.
* Enter first-order pattern matrix.
Compute F1={0.929768979,        0.070437071,    0.023342211,    -0.031003209,   0.077697724;

0.893721341,    -0.037590435,   0.014236436,    -0.123748484,   0.105052139;

0.83678639,     -0.041437465,   0.042134208,    0.003487664,    -0.004795598;

0.832440766,    0.048623171,    0.105489561,    -0.040659122,   0.085502643;
                 0.829409735,   0.090478409,    -0.039036501,   0.034094719,    0.150942017;
                 0.808408521,   -0.05030782,    0.052183572,    0.059380664,    -0.017087293;
                 0.794174772,   -0.029592837,   0.12433212,     0.03268405,     -0.10265853;
                 0.738278449,   0.141841983,    0.00323001,     -0.121982791,   -0.108192362;
                 0.715482804,   0.011483825,    -0.027642039,   -0.008551353,   -0.211650475;
                 0.704568156,   0.016670586,    0.056855586,    0.045006538,    -0.212703309;
                 0.682878309,   -0.009770111,   0.28405449,     0.068257407,    -0.05435771;
                 0.679774442,   -0.062700096,   0.095278675,    0.051087949,    -0.086514957;
                 0.672669127,   0.070741455,    0.11499865,     -0.046386447,   -0.221176056;
                 0.667228697,   0.071202062,    -0.031999554,   0.147478398,    -0.023661933;
                 0.621018553,   0.091820715,    0.221134258,    0.100021381,    -0.071477797;
                 0.614184439,   0.066835344,    0.087838398,    0.080808737,    -0.199796359;
                 0.612762808,   0.095447456,    0.034918515,    0.110281467,    0.08462564;
                 0.596102644,   -0.03095136,    -0.00201852,    0.061536698,    -0.33562254;
                 0.549925428,   0.025973094,    -0.005067543,   0.131895808,    0.144016083;
                 0.536093647,   0.141448891,    0.146640274,    0.124170319,    -0.024626198;
                 0.506088992,   -0.033666666,   -0.001669395,   0.046309258,    -0.454507204;
                 0.498075141,   0.013872309,    -0.10885918,    0.077671257,    -0.398873637;
                 0.491259386,   0.070648257,    0.362903736,    0.168862314,    0.078222301;
                 0.473466629,   0.005303758,    0.103551278,    0.135820203,    -0.117243861;
                 0.451181677,   0.148019961,    0.3063622,      0.104236606,    -0.160420059;
                 0.44949463,    0.061865916,    0.152604201,    0.118073339,    -0.259274022;
                 0.448271527,   0.057276975,    0.069429094,    0.196138046,    -0.302385835;
                 0.441278082,   -0.016732654,   -0.165357102,   0.050981186,    -0.105594824;
                 0.372059316,   0.143062588,    0.149719062,    0.084850727,    -0.233577388;
                 0.294799116,   0.019743931,    0.205908903,    -0.127051608,   -0.194869273;
                 0.291303209,   0.175314589,    -0.138150987,   -0.052966533,   -0.276976361;
                 0.051340263,   0.859971633,    -0.028102002,   -0.181239335,   -0.018060006;
                 0.049269878,   0.798633564,    -0.151224086,   0.283981411,    0.014180584;
                 0.112522688,   0.79019034,     -0.299883643,   -0.019312022,   0.091239042;
                -0.062649107,   0.784424706,    -0.077893563,   0.122824531,    0.07277096;
                 0.201876902,   0.738874829,    0.028276781,    -0.282121548,   -0.001817608;
                 0.007256071,   0.705496997,    0.038491515,    0.130323939,    -0.081993413;
                 0.017346303,   0.681977416,    -0.012270661,   0.115874427,    -0.135846956;
                 0.015079376,   0.651009563,    0.120112376,    0.076795637,    -0.069999399;
                 0.028556892,   0.591885068,    0.294061875,    -0.100796783,   -0.178412997;
                 0.113671764,   0.573156102,    -0.018546419,   -0.016499915,   0.169393136;
                 0.059109467,   0.560073187,    0.099376298,    -0.076723588,   -0.208692235;
                 0.040704652,   0.552216182,    0.188498422,    0.222664922,    -0.27312236;
                -0.110329328,   0.548895367,    0.17999264,     -0.006143955,   0.134072686;
                 0.067940487,   0.547146645,    0.142229481,    0.2147295,      -0.211515004;
                -0.013266606,   0.545361119,    0.098026072,    0.45409551,     -0.031491936;
                 0.032362421,   0.516921256,    0.187754056,    0.220293264,    -0.294936137;
                 0.012235931,   0.48714161,     0.486612055,    -0.21474517,    -0.025465214;
                -0.027741092,   0.462345113,    0.085130282,    0.082813962,    -0.071520071;
                -0.031145186,   0.459836876,    0.13108185,     0.209562293,    -0.294059431;
                 0.094452022,   0.437925799,    0.259173827,    -0.013808867,   -0.224961573;
                 0.130324169,   0.41607347,     0.08525794,     0.412044073,    -0.172559454;
                 0.089138142,   0.332628804,    -0.051500194,   0.175731055,    0.046435234;
                -0.062680791,   -0.044870429,   0.701278638,    0.004228009,    -0.094198362;
                 0.133322558,   -0.074077107,   0.645859721,    0.067403475,    -0.039936534;
                 0.066853586,   -0.019079326,   0.603015446,    0.184859791,    0.095156317;
                 0.180336801,   0.038546973,    0.556426526,    0.046591223,    0.114189739;
                 0.036385519,   0.237337158,    0.551161305,    -0.135096911,   0.016930026;
                 0.138864563,   -0.060552653,   0.550073135,    0.134649776,    -0.002154831;

0.083159561,    -0.00494762,    0.504456239,    0.056695359,    -0.034014707;
                 0.019762849,   0.19906486,     0.449226362,    0.272710713,    -0.245670643;
                -0.018739548,   0.438209595,    0.444921451,    -0.072096516,   0.084559305;
                -0.059733988,   0.251261,       0.435869984,    0.177897505,    -0.108978081;
                 0.185749172,   0.200288252,    0.408960146,    -0.035042903,   -0.268257666;
                 0.057774156,   0.112368687,    0.305586574,    0.125707757,    -0.206850512;
                 0.234575412,   -0.070695517,   0.291011426,    -0.21881141,    -0.263419624;
                 0.205664292,   -0.038696033,   0.239546927,    0.068741834,    -0.233603453;
                 0.131522618,   0.11775963,     0.096545341,    0.594010619,    -0.024543746;
                 0.180979343,   -0.023561219,   0.150279397,    0.559304749,    0.066433014;
                 0.2576374,     0.066656784,    0.0853576,      0.541330615,    -0.039216255;
                 0.425413272,   0.049384441,    -0.033640897,   -0.007143601,   -0.529796375;
                 0.278412667,   0.14879198,     0.119739896,    0.106365903,    -0.489063961;
                 0.306119857,   0.009130316,    0.097404029,    0.072160541,    -0.478959818;
                 0.373257768,   0.144919141,    0.122385527,    0.084732005,    -0.411342454;
                 0.258747111,   -0.118269424,   0.284303916,    -0.075041911,   -0.395704052;
                 0.239899202,   0.134491616,    -0.041590461,   0.183603276,    -0.285043821}.
* enter first-order variable names.
compute varname={"v001"; "v002"; "v003"; "v004"; "v005"; "v006"; "v007"; "v008"; "v009"; "v010"; "v011"; "v012"; "v013"; "v014"; "v015"; "v016"; "v017"; "v018"; "v019"; "v020"; "v021"; "v022"; "v023"; "v024"; "v025"; "v026"; "v027"; "v028"; "v029"; "v030"; "v031"; "v032"; "v033"; "v034"; "v035"; "v036"; "v037"; "v038"; "v039"; "v040"; "v041"; "v042"; "v043"; "v044"; "v045"; "v046"; "v047"; "v048"; "v049"; "v050"; "v051"; "v052"; "v053"; "v054"; "v055"; "v056"; "v057"; "v058"; "v059"; "v060"; "v061"; "v062"; "v063"; "v064"; "v065"; "v066"; "v067"; "v068"; "v069"; "v070"; "v071"; "v072"; "v073"; "v074"; "v075"; "v076"}.
*enter first-order factor names.
compute f1name={"factor1", "factor2", "factor3", "factor4", "factor5"}.
* enter second-order factor loadings.
Compute F2={0.828; -.624; .587; .505; .441}.
*enter second-order factor names.
compute f2name={"General1"}.

* END OF INPUT.
print F1/Format"f5.3" /rnames=varname /cnames=f1name.
compute C1=ncol(F1).
print F2/format"f5.3" /rnames=f1name /cnames=f2name.
compute C2=ncol(F2).
Compute zw1=1-rssq(f2).
Compute Unique=Mdiag (zw1).
compute zw1=sqrt(unique).
compute B={F2,zw1}.
Compute SLP=F1*B.
compute hrtot=rssq(SLP).
compute C1end=C1+C2.
compute C1start=C2+1.
compute zw2=slp(:,C1start:C1end).
compute HR1st=rssq(zw2).
compute zw3=SLP(:,1:C2).
compute HR2nd=rssq(zw3).
compute HCtot=cssq(SLP).
compute Htot=mssq(SLP).
compute Htot100=HCtot &/ Htot.
compute Htotsum=msum(HCtot) / Htot.
compute zw4=Htot100(1:C2).
compute zw5=Htot100(C1start:C1end).
compute EXG=rsum(zw4).
compute EXF=rsum(zw5).
compute results1={SLP, HRtot, HR2nd, HR1st}.
compute slpname={f2name, f1name, "H² total", "H² G", "H² 1st"}.
print results1/ format "f5.3" /title="factor loadings of Schmid-Leiman Solution and h²" /rnames = varname /cnames=slpname.
compute results2={HCtot, Htot;
                  Htot100, Htotsum}.
compute fixedn2={f2name,f1name,"total"}.
print results2 /format"f5.3"/ title="sum of squared loadings"
/rlabels="H²" "%" /cnames=fixedn2.
print EXG /format"f5.3"/ title="percentage of exracted variance explained by general factors (%)".
print EXF /format"f5.3"/ title="percentage of extracted variance explained by first order factors (%)".
        End Matrix.






_____________
Tato zpráva a všechny připojené soubory jsou důvěrné a určené výlučně adresátovi(-ům). Jestliže nejste oprávněným adresátem, je zakázáno jakékoliv zveřejňování, zprostředkování nebo jiné použití těchto informací. Jestliže jste tento mail dostali neoprávněně, prosím, uvědomte odesilatele a smažte zprávu i přiložené soubory. Odesilatel nezodpovídá za jakékoliv chyby nebo opomenutí způsobené tímto přenosem.

Jste si jisti, že opravdu potřebujete vytisknout tuto zprávu a/nebo její přílohy? Myslete na přírodu.


This message and any attached files are confidential and intended solely for the addressee(s). Any publication, transmission or other use of the information by a person or entity other than the intended addressee is prohibited. If you receive this in error please contact the sender and delete the message as well as all attached documents. The sender does not accept liability for any errors or omissions as a result of the transmission.

Are you sure that you really need a print version of this message and/or its attachments? Think about nature.

-.- --

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD