Hello,
Can we interpret simple slopes or Johnson-Neyman even if our interaction effect is not significant? If yes, then how? Also, what do we do with Data for visualizing conditional effect of X on Y? My results are listed below. Thanks in advance! *********. Model = 1 Y = qoltot X = VisaGrou M = bcope_ma Sample size 97 ************************************************************************** Outcome: qoltot Model Summary R R-sq F df1 df2 p .5083 .2584 10.9638 3.0000 93.0000 .0000 Model coeff se t p LLCI ULCI constant 68.8666 1.7854 38.5717 .0000 65.3211 72.4121 bcope_ma -.7737 .3217 -2.4048 .0182 -1.4125 -.1348 VisaGrou -12.1130 3.5872 -3.3767 .0011 -19.2366 -4.9895 int_1 1.0766 .6546 1.6445 .1034 -.2234 2.3765 Interactions: int_1 VisaGrou X bcope_ma ************************************************************************* Conditional effect of X on Y at values of the moderator(s): bcope_ma Effect se t p LLCI ULCI -5.9635 -18.5331 4.8543 -3.8179 .0002 -28.1727 -8.8934 .0000 -12.1130 3.5872 -3.3767 .0011 -19.2366 -4.9895 5.9635 -5.6930 5.7143 -.9963 .3217 -17.0406 5.6546 Values for quantitative moderators are the mean and plus/minus one SD from mean. Values for dichotomous moderators are the two values of the moderator. ********************* JOHNSON-NEYMAN TECHNIQUE ************************** Moderator value(s) defining Johnson-Neyman significance region(s): Value % below % above 3.1219 71.1340 28.8660 Conditional effect of X on Y at values of the moderator (M) bcope_ma Effect se t p LLCI ULCI -8.7526 -21.5357 6.2472 -3.4472 .0009 -33.9415 -9.1299 -7.5526 -20.2438 5.6176 -3.6037 .0005 -31.3993 -9.0884 -6.3526 -18.9520 5.0320 -3.7663 .0003 -28.9445 -8.9594 -5.1526 -17.6601 4.5077 -3.9178 .0002 -26.6114 -8.7088 -3.9526 -16.3682 4.0683 -4.0234 .0001 -24.4471 -8.2893 -2.7526 -15.0763 3.7440 -4.0268 .0001 -22.5112 -7.6415 -1.5526 -13.7845 3.5662 -3.8653 .0002 -20.8663 -6.7026 -.3526 -12.4926 3.5571 -3.5120 .0007 -19.5563 -5.4289 .8474 -11.2007 3.7178 -3.0127 .0033 -18.5835 -3.8179 2.0474 -9.9089 4.0280 -2.4600 .0157 -17.9078 -1.9099 3.1219 -8.7521 4.4073 -1.9858 .0500 -17.5041 .0000 3.2474 -8.6170 4.4567 -1.9335 .0562 -17.4672 .2333 4.4474 -7.3251 4.9734 -1.4729 .1442 -17.2012 2.5510 5.6474 -6.0332 5.5534 -1.0864 .2801 -17.0612 4.9947 6.8474 -4.7414 6.1790 -.7673 .4448 -17.0117 7.5290 8.0474 -3.4495 6.8377 -.5045 .6151 -17.0279 10.1289 9.2474 -2.1576 7.5208 -.2869 .7748 -17.0926 12.7773 10.4474 -.8657 8.2223 -.1053 .9164 -17.1936 15.4621 11.6474 .4261 8.9377 .0477 .9621 -17.3225 18.1747 12.8474 1.7180 9.6641 .1778 .8593 -17.4730 20.9090 14.0474 3.0099 10.3990 .2894 .7729 -17.6406 23.6603 15.2474 4.3017 11.1409 .3861 .7003 -17.8219 26.4254 ************************************************************************** Data for visualizing conditional effect of X on Y: VisaGrou bcope_ma yhat -.5464 -5.9635 83.6066 .4536 -5.9635 65.0736 -.5464 .0000 75.4850 .4536 .0000 63.3720 -.5464 5.9635 67.3635 .4536 5.9635 61.6705 ******************** ANALYSIS NOTES AND WARNINGS ************************* Level of confidence for all confidence intervals in output: 95.00 NOTE: The following variables were mean centered prior to analysis: VisaGrou bcope_ma NOTE: Some cases were deleted due to missing data. The number of such cases was: 6 NOTE: All standard errors for continuous outcome models are based on the HC3 estimator ------ END MATRIX ----- |
Administrator
|
What does this question have to do with SPSS?
That is not standard SPSS output (aside that somebodies macro spit it out of MATRIX). Off hand I would say NO. If the effect is NOT sig then you shouldn't be fishing around in the dung looking for a pearl.
Please reply to the list and not to my personal email.
Those desiring my consulting or training services please feel free to email me. --- "Nolite dare sanctum canibus neque mittatis margaritas vestras ante porcos ne forte conculcent eas pedibus suis." Cum es damnatorum possederunt porcos iens ut salire off sanguinum cliff in abyssum?" |
Free forum by Nabble | Edit this page |