Help interpret Moderation (Macro Hayes) results
Posted by psy_vm on May 18, 2014; 9:30pm
URL: http://spssx-discussion.165.s1.nabble.com/Help-interpret-Moderation-Macro-Hayes-results-tp5726125.html
Hello,
I need help interpreting my results for moderation/interaction effect. I'll discuss one result here which can be as a guideline for 15 other macros that I need to run. I've run Hayes process for moderaion in SPSS for finding moderation effect.
My I.V. is group membership, categorical with 2 groups
My D.V. is depression level, continuous. I have 5 different variables so running macro 1 by 1 for all of them.
My moderating variable is Resilience level,continuous. I have 2 more moderating variables and will run macros separately for them. in total 1 I.V x 3 modrators x 5 D.V.s = 15 macros.
Please help me understand and interpret my results, including test of simple slopes, un/standardized figures, and other important aspects.
Also, please direct me to an online resource for understanding these results.
Thanks in advance!
*********.
Model = 1
Y = qoltot
X = VisaGrou
M = bcope_ma
Sample size
97
**************************************************************************
Outcome: qoltot
Model Summary
R R-sq F df1 df2 p
.5083 .2584 10.9638 3.0000 93.0000 .0000
Model
coeff se t p LLCI ULCI
constant 68.8666 1.7854 38.5717 .0000 65.3211 72.4121
bcope_ma -.7737 .3217 -2.4048 .0182 -1.4125 -.1348
VisaGrou -12.1130 3.5872 -3.3767 .0011 -19.2366 -4.9895
int_1 1.0766 .6546 1.6445 .1034 -.2234 2.3765
Interactions:
int_1 VisaGrou X bcope_ma
*************************************************************************
Conditional effect of X on Y at values of the moderator(s):
bcope_ma Effect se t p LLCI ULCI
-5.9635 -18.5331 4.8543 -3.8179 .0002 -28.1727 -8.8934
.0000 -12.1130 3.5872 -3.3767 .0011 -19.2366 -4.9895
5.9635 -5.6930 5.7143 -.9963 .3217 -17.0406 5.6546
Values for quantitative moderators are the mean and plus/minus one SD from mean.
Values for dichotomous moderators are the two values of the moderator.
********************* JOHNSON-NEYMAN TECHNIQUE **************************
Moderator value(s) defining Johnson-Neyman significance region(s):
Value % below % above
3.1219 71.1340 28.8660
Conditional effect of X on Y at values of the moderator (M)
bcope_ma Effect se t p LLCI ULCI
-8.7526 -21.5357 6.2472 -3.4472 .0009 -33.9415 -9.1299
-7.5526 -20.2438 5.6176 -3.6037 .0005 -31.3993 -9.0884
-6.3526 -18.9520 5.0320 -3.7663 .0003 -28.9445 -8.9594
-5.1526 -17.6601 4.5077 -3.9178 .0002 -26.6114 -8.7088
-3.9526 -16.3682 4.0683 -4.0234 .0001 -24.4471 -8.2893
-2.7526 -15.0763 3.7440 -4.0268 .0001 -22.5112 -7.6415
-1.5526 -13.7845 3.5662 -3.8653 .0002 -20.8663 -6.7026
-.3526 -12.4926 3.5571 -3.5120 .0007 -19.5563 -5.4289
.8474 -11.2007 3.7178 -3.0127 .0033 -18.5835 -3.8179
2.0474 -9.9089 4.0280 -2.4600 .0157 -17.9078 -1.9099
3.1219 -8.7521 4.4073 -1.9858 .0500 -17.5041 .0000
3.2474 -8.6170 4.4567 -1.9335 .0562 -17.4672 .2333
4.4474 -7.3251 4.9734 -1.4729 .1442 -17.2012 2.5510
5.6474 -6.0332 5.5534 -1.0864 .2801 -17.0612 4.9947
6.8474 -4.7414 6.1790 -.7673 .4448 -17.0117 7.5290
8.0474 -3.4495 6.8377 -.5045 .6151 -17.0279 10.1289
9.2474 -2.1576 7.5208 -.2869 .7748 -17.0926 12.7773
10.4474 -.8657 8.2223 -.1053 .9164 -17.1936 15.4621
11.6474 .4261 8.9377 .0477 .9621 -17.3225 18.1747
12.8474 1.7180 9.6641 .1778 .8593 -17.4730 20.9090
14.0474 3.0099 10.3990 .2894 .7729 -17.6406 23.6603
15.2474 4.3017 11.1409 .3861 .7003 -17.8219 26.4254
**************************************************************************
Data for visualizing conditional effect of X on Y:
VisaGrou bcope_ma yhat
-.5464 -5.9635 83.6066
.4536 -5.9635 65.0736
-.5464 .0000 75.4850
.4536 .0000 63.3720
-.5464 5.9635 67.3635
.4536 5.9635 61.6705
******************** ANALYSIS NOTES AND WARNINGS *************************
Level of confidence for all confidence intervals in output:
95.00
NOTE: The following variables were mean centered prior to analysis:
VisaGrou bcope_ma
NOTE: Some cases were deleted due to missing data. The number of such cases was:
6
NOTE: All standard errors for continuous outcome models are based on the HC3 estimator
------ END MATRIX -----