Login  Register

Re: Interpreting Mediation results

Posted by Muir Houston-3 on Jul 25, 2014; 10:17am
URL: http://spssx-discussion.165.s1.nabble.com/Interpreting-Mediation-results-tp5726809p5726823.html

Have you checked out Hayes website?
http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html   

and also perhaps
http://www.afhayes.com/macrofaq.html 


Muir Houston, HNC, BA (Hons), M.Phil., PhD, FHEA
College of Social Sciences Ethics Officer
Social Justice, Place and Lifelong Education Research
School of Education
University of Glasgow
0044+141-330-4699

Silver bullet or red herring? New evidence on the place of aspirations in education
R3L+ Project - Adult education in the light of the European Quality Strategy
http://www.learning-regions.net/

GINCO Project - Grundtvig International Network of Course Organisers
http://www.ginconet.eu/

THEMP - Tertiary Higher Education for People in Mid Life
http://themp.eu/ 
 


-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: 24 July 2014 08:17
To: [hidden email]
Subject: Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation using Hayes' Process macro. The key point for finding significance is to see that the Class Interval does not include zero. However, in my mediation model, although the indirect effect CI doesn't include zero, the initial Models's CI (for bcope_ma, under Duration) includes zero. Should I still count my indirect effects as significant even though initial model for mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI      
ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI        
ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI      
ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD