|
Dear All,
At the moment I am building a prediction model (logistic regression). I need to validate my model, therefore I decided to "shrink" the optimism of the model by bootstrapping method. However, when the bootstrapping command is ON in PASW-SPSS 18 I cannot save the predicted probabilities in order to calculate the c-statistic (via AUC of the pre1) of all the bootsrapping derived models. Can anyone help me ? ===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD |
|
Georgios Chalikias wrote:
> At the moment I am building a prediction model (logistic regression). > > I need to validate my model, therefore I decided to "shrink" the > optimism of the model by bootstrapping method. > > However, when the bootstrapping command is ON in PASW-SPSS 18 I cannot > save the predicted probabilities in order to calculate the c-statistic > (via AUC of the pre1) of all the bootsrapping derived models. > > When I beta tested PASW 18 I criticized the fact that the bootstrap module ignored some statistics (like r-square in linear and logistic regression). I finally wrote my own bootstrap program to get them. I'm attaching a sample dataset (Shapiro.txt, I can't attach it as a SAV file) to show you how to use it: * First, import data from text (variable names are at 1st row) & label variables *. VAR LABEL ocu 'Oral contraceptive use' /case 'Myocardial infarction'. VALUE LABEL Agegrp 1 '25-29 years' 2 '30-34 years' 3 '35-39 years' 4 '40-44 years' 5 '45-49 years'. VALUE LABEL Smoke 1 'Non smoker' 2 '1-24 cig/day' 3 ' >=25 cig/day'. VALUE LABEL ocu 0 'No' 1 'Yes'. VALUE LABEL case 0'Control' 1 'Case'. * Replace Agegrp by MeanAge for regression model *. COMPUTE MeanAge=27+(Agegrp-1)*5. FORMAT MeanAge (F8). VAR LABEL MeanAge 'Mean group age (years)'. DATASET NAME OriginalData. * Creating 100 (k) Boot Samples *. * These steps are fully automatic, the only modifiable step is k (number of samples) *. DATASET DECLARE BootData. PRESERVE. * Use Mersenne Twister as random number generator *. SET RNG=MT MTINDEX=RANDOM. SET MXLOOPS=100. /* Should not be smaller than k *. * Matrix program. WARNING: all variables must be numeric (it won't work with String variables, AUTORECODE them first) *. MATRIX. GET DATA /VAR=ALL /NAMES=VNames. COMPUTE n=NROW(data). COMPUTE p=NCOL(data). * Put original data in first block of bootstrapped samples *. COMPUTE BootData={MAKE(n,1,0),Data}. * Number of bootstrap samples, can be increased, but then MXLOOPS must be increased too *. COMPUTE k=100. COMPUTE BootSamp=MAKE(n,p,0). LOOP i= 1 TO k. . COMPUTE flipcoin=1+TRUNC(n*UNIFORM(n,1)). . COMPUTE BootSamp=Data(flipcoin,:). . COMPUTE BootData={BootData;MAKE(n,1,i),BootSamp}. END LOOP. * Export Bootsamples to new dataset *. COMPUTE VNames={'BootNr',Vnames}. SAVE BootData/OUTFILE=BootData /NAMES=VNames. END MATRIX. RESTORE. * Formatting variables in BootData *. DATASET ACTIVATE BootData. APPLY DICTIONARY /FROM OriginalData /SOURCE VARIABLES = ALL /FILEINFO /VARINFO ALIGNMENT FORMATS LEVEL MISSING VALLABELS = REPLACE ATTRIBUTES = REPLACE VARLABEL WIDTH . FORMAT BootNr (F8). VALUE LABEL BootNr 0'Original Dataset'. * Split file by BootNr and get all the 101 regression models *. SPLIT FILE LAYERED BY BootNr . * End of automatic steps *. * Run logistic regression model (modify it for your model) and save predicted probabilities *. PRESERVE. SET PRINTBACK=NONE/ ERRORS=NONE /RESULTS=NONE. /* Shut down output *. LOGISTIC REGRESSION VARIABLES case /METHOD = ENTER MeanAge Smoke ocu /CONTRAST (Smoke)=Indicator(1) /CONTRAST (ocu)=Indicator(1) /SAVE = PRED. RESTORE. * Run ROC analysis with Pre_1 and get de 101 AUC *. PRESERVE. SET OLANG=ENGLISH. DATASET DECLARE BootAUC. OMS /SELECT TABLES /IF COMMANDS = ["ROC Curve"] SUBTYPES = ["Area Under the Curve"] /DESTINATION FORMAT = SAV OUTFILE = BootAUC. OMS /SELECT TABLES /IF COMMANDS = ["ROC Curve"] SUBTYPES = ["Case Processing Summary"] /DESTINATION VIEWER = NO. * ROC analysis (replace "case" by the name of the outcome variable in your dataset) *. ROC PRE_1 BY case (1) /PLOT = NONE /PRINT = SE /CRITERIA = CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION(FREE) CI(95) /MISSING = EXCLUDE . OMSEND. RESTORE. * 101 c-indexes ready to be examined *. DATASET ACTIVATE BootAUC. DELETE VARIABLES Command_ Subtype_ Label_ Var2. SUMMARIZE /TABLES=ALL /FORMAT=LIST NOCASENUM NOTOTAL LIMIT=1 /TITLE='Statistics from Original Dataset' /CELLS=NONE. COMPUTE filter_$=($casenum GT 1.). FILTER BY filter_$. FREQUENCIES VARIABLES=Area /FORMAT=NOTABLE /PERCENTILES= 2.5 97.5 /STATISTICS=STDDEV MEAN MEDIAN. HTH, Marta GG (from Spain) -- For miscellaneous SPSS related statistical stuff, visit: http://gjyp.nl/marta/ Agegrp Smoke OCU case 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 3 1 0 0 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 1 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 1 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 3 1 1 0 4 1 1 0 4 1 1 0 4 1 1 0 4 1 1 0 5 1 1 0 5 1 1 0 4 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 2 2 0 1 2 2 0 1 2 2 0 1 2 2 0 1 2 2 0 1 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 3 2 0 0 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 1 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 4 2 0 0 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 1 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 5 2 0 0 1 2 1 1 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 2 2 1 1 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 3 2 1 1 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 4 2 1 0 4 2 1 0 4 2 1 0 4 2 1 0 5 2 1 0 1 3 0 1 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3 0 0 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 1 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 4 3 0 0 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 1 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 5 3 0 0 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 1 3 1 0 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 0 3 3 1 0 3 3 1 0 3 3 1 0 3 3 1 0 3 3 1 0 3 3 1 0 4 3 1 1 4 3 1 1 4 3 1 1 4 3 1 1 4 3 1 1 4 3 1 0 5 3 1 1 5 3 1 1 5 3 1 1 5 3 1 0 5 3 1 0 |
|
In reply to this post by Georgios Chalikias
Georgios Chalikias wrote:
> At the moment I am building a prediction model (logistic regression). > > I need to validate my model, therefore I decided to "shrink" the > optimism of the model by bootstrapping method. > > However, when the bootstrapping command is ON in PASW-SPSS 18 I cannot > save the predicted probabilities in order to calculate the c-statistic > (via AUC of the pre1) of all the bootsrapping derived models. > Hi everybody! Just in case anyone is interested, Georgios and I had an off list exchange of mails, the code works OK, and, following Georgios' suggestion, I also added some code to bootstrap the calibration. BTW Georgios, I forgot to mention that you are performing an internal validation, a bit optimistic. Take a look at this series of 4 papers at BMJ (Research Methods and reporting): Moons et al. Prognosis and prognostic research: what, why and how? BMJ 2009; 338:b375 Royston et al. Prognosis and prognostic research: developing a prognostic model. BMJ 2009; 338:b604 Altman et al. Prognosis and prognostic research: validating a prognostic model. BMJ 2009; 338:b605 <--- Specially this one Moons et al. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 2009; 308:b606 I have turned everything into an old fashioned - obsolete? - macro (I think I can also hear Jon's big sigh). I will upload it very soon (give me a couple of hours, I have a meeting right now) to the web page you can find below my signature. Best regards, Marta GG -- For miscellaneous SPSS related statistical stuff, visit: http://gjyp.nl/marta/ ===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD |
| Free forum by Nabble | Edit this page |
