Interpreting Mediation results

classic Classic list List threaded Threaded
9 messages Options
Reply | Threaded
Open this post in threaded view
|

Interpreting Mediation results

psy_vm
Hello,

I have a few questions regarding interpretation of my results for Mediation using Hayes' Process macro. The key point for finding significance is to see that the Class Interval does not include zero. However, in my mediation model, although the indirect effect CI doesn't include zero, the initial Models's CI (for bcope_ma, under Duration) includes zero. Should I still count my indirect effects as significant even though initial model for mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI       ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI         ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559      .1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI       ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases was:  33
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

peter link
The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

Muir Houston-3
In reply to this post by psy_vm
Have you checked out Hayes website?
http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html   

and also perhaps
http://www.afhayes.com/macrofaq.html 


Muir Houston, HNC, BA (Hons), M.Phil., PhD, FHEA
College of Social Sciences Ethics Officer
Social Justice, Place and Lifelong Education Research
School of Education
University of Glasgow
0044+141-330-4699

Silver bullet or red herring? New evidence on the place of aspirations in education
R3L+ Project - Adult education in the light of the European Quality Strategy
http://www.learning-regions.net/

GINCO Project - Grundtvig International Network of Course Organisers
http://www.ginconet.eu/

THEMP - Tertiary Higher Education for People in Mid Life
http://themp.eu/ 
 


-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: 24 July 2014 08:17
To: [hidden email]
Subject: Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation using Hayes' Process macro. The key point for finding significance is to see that the Class Interval does not include zero. However, in my mediation model, although the indirect effect CI doesn't include zero, the initial Models's CI (for bcope_ma, under Duration) includes zero. Should I still count my indirect effects as significant even though initial model for mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI      
ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI        
ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI      
ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

psy_vm
In reply to this post by peter link

Thank you for your response. I have used bootstrapping method in my mediation. I will discuss the small effect size that you pointed out with my professor.

Thanks once again!
Vijaita

Sent from Yahoo Mail on Android



From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Thu, Jul 24, 2014 5:12:02 PM

The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD



If you reply to this email, your message will be added to the discussion below:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726816.html
To unsubscribe from Interpreting Mediation results, click here.
NAML
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

psy_vm
In reply to this post by peter link

Hello,

Please may you help me with an additional question?

Do you know what effect size has Hayes used in his process? I've been through his book where he talks about the 6 different effect sizes that process gives in the result section:
Partial, complete, r_square, kappa, etc. But which one has he used in the total, direct, indirect effects, etc.

Would appreciate your help.
Thanks,
Vijaita

Sent from Yahoo Mail on Android



From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Thu, Jul 24, 2014 5:12:02 PM

The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD



If you reply to this email, your message will be added to the discussion below:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726816.html
To unsubscribe from Interpreting Mediation results, click here.
NAML
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

peter link

I’m not familiar with PROCESS but from the output it looks like an R-sq and Kappa-sq is provided. This is towards the bottom of the output. Is this different than what you are asking about?

 

By the way, Andrew Hayes has an email address listed on his website. Perhaps, go to his website and contact him directly.

 

Peter

 

From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: Friday, August 15, 2014 3:48 PM
To: [hidden email]
Subject: Re: [SPSSX-L] Interpreting Mediation results

 

Hello,

Please may you help me with an additional question?

Do you know what effect size has Hayes used in his process? I've been through his book where he talks about the 6 different effect sizes that process gives in the result section:
Partial, complete, r_square, kappa, etc. But which one has he used in the total, direct, indirect effects, etc.

Would appreciate your help.
Thanks,
Vijaita

Sent from Yahoo Mail on Android

 


From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Thu, Jul 24, 2014 5:12:02 PM

 

The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


If you reply to this email, your message will be added to the discussion below:

http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726816.html

To unsubscribe from Interpreting Mediation results, click here.
NAML

 


View this message in context: Re: Interpreting Mediation results
Sent from the SPSSX Discussion mailing list archive at Nabble.com.
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

psy_vm

I meant the sizes of the total, direct and indirect effects (.0465, .0059 and .0406 respectively). Are they Cohen's d or some other ones?

I did mail him with this and the previous questions and he suggested I buy the book, which I just did. I read about the 6 different effects process gives at the bottom but I wanted to know about these other 3 ones. Makes sense?

Vijaita

Sent from Yahoo Mail on Android



From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Fri, Aug 15, 2014 11:26:51 PM

I’m not familiar with PROCESS but from the output it looks like an R-sq and Kappa-sq is provided. This is towards the bottom of the output. Is this different than what you are asking about?

 

By the way, Andrew Hayes has an email address listed on his website. Perhaps, go to his website and contact him directly.

 

Peter

 

From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: Friday, August 15, 2014 3:48 PM
To: [hidden email]
Subject: Re: [SPSSX-L] Interpreting Mediation results

 

Hello,

Please may you help me with an additional question?

Do you know what effect size has Hayes used in his process? I've been through his book where he talks about the 6 different effect sizes that process gives in the result section:
Partial, complete, r_square, kappa, etc. But which one has he used in the total, direct, indirect effects, etc.

Would appreciate your help.
Thanks,
Vijaita

Sent from Yahoo Mail on Android

 


From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Thu, Jul 24, 2014 5:12:02 PM

 

The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


If you reply to this email, your message will be added to the discussion below:

http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726816.html

To unsubscribe from Interpreting Mediation results, click here.
NAML

 


View this message in context: Re: Interpreting Mediation results
Sent from the SPSSX Discussion mailing list archive at Nabble.com.
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


If you reply to this email, your message will be added to the discussion below:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726985.html
To unsubscribe from Interpreting Mediation results, click here.
NAML
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

peter link

Hi - Those are regression/path coefficients or products thereof and not effect sizes.

 

The Total Effect: The effect of X on Y. Often this is labeled as the c path.

The Direct Effect: The effect of X on Y adjusting for M. Often this is labeled as the c’ path.

The Indirect Effect: The product of the effects of X on M (a path) and M on Y (b path). Often this product is labeled as the ab path.

 

Hope this helps.

 

peter

 

From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: Friday, August 15, 2014 11:56 PM
To: [hidden email]
Subject: Re: [SPSSX-L] Interpreting Mediation results

 

I meant the sizes of the total, direct and indirect effects (.0465, .0059 and .0406 respectively). Are they Cohen's d or some other ones?

I did mail him with this and the previous questions and he suggested I buy the book, which I just did. I read about the 6 different effects process gives at the bottom but I wanted to know about these other 3 ones. Makes sense?

Vijaita

Sent from Yahoo Mail on Android

 


From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Fri, Aug 15, 2014 11:26:51 PM

 

I’m not familiar with PROCESS but from the output it looks like an R-sq and Kappa-sq is provided. This is towards the bottom of the output. Is this different than what you are asking about?

 

By the way, Andrew Hayes has an email address listed on his website. Perhaps, go to his website and contact him directly.

 

Peter

 

From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: Friday, August 15, 2014 3:48 PM
To: [hidden email]
Subject: Re: [SPSSX-L] Interpreting Mediation results

 

Hello,

Please may you help me with an additional question?

Do you know what effect size has Hayes used in his process? I've been through his book where he talks about the 6 different effect sizes that process gives in the result section:
Partial, complete, r_square, kappa, etc. But which one has he used in the total, direct, indirect effects, etc.

Would appreciate your help.
Thanks,
Vijaita

Sent from Yahoo Mail on Android

 


From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Thu, Jul 24, 2014 5:12:02 PM

 

The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


If you reply to this email, your message will be added to the discussion below:

http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726816.html

To unsubscribe from Interpreting Mediation results, click here.
NAML

 


View this message in context: Re: Interpreting Mediation results
Sent from the SPSSX Discussion mailing list archive at Nabble.com.
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


If you reply to this email, your message will be added to the discussion below:

http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726985.html

To unsubscribe from Interpreting Mediation results, click here.
NAML

 


View this message in context: Re: Interpreting Mediation results
Sent from the SPSSX Discussion mailing list archive at Nabble.com.
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Interpreting Mediation results

psy_vm

Thank you so much for this clarification! Very helpful.
Bests,
Vijaita

Sent from Yahoo Mail on Android



From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Mon, Aug 18, 2014 3:09:31 PM

Hi - Those are regression/path coefficients or products thereof and not effect sizes.

 

The Total Effect: The effect of X on Y. Often this is labeled as the c path.

The Direct Effect: The effect of X on Y adjusting for M. Often this is labeled as the c’ path.

The Indirect Effect: The product of the effects of X on M (a path) and M on Y (b path). Often this product is labeled as the ab path.

 

Hope this helps.

 

peter

 

From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: Friday, August 15, 2014 11:56 PM
To: [hidden email]
Subject: Re: [SPSSX-L] Interpreting Mediation results

 

I meant the sizes of the total, direct and indirect effects (.0465, .0059 and .0406 respectively). Are they Cohen's d or some other ones?

I did mail him with this and the previous questions and he suggested I buy the book, which I just did. I read about the 6 different effects process gives at the bottom but I wanted to know about these other 3 ones. Makes sense?

Vijaita

Sent from Yahoo Mail on Android

 


From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Fri, Aug 15, 2014 11:26:51 PM

 

I’m not familiar with PROCESS but from the output it looks like an R-sq and Kappa-sq is provided. This is towards the bottom of the output. Is this different than what you are asking about?

 

By the way, Andrew Hayes has an email address listed on his website. Perhaps, go to his website and contact him directly.

 

Peter

 

From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of psy_vm
Sent: Friday, August 15, 2014 3:48 PM
To: [hidden email]
Subject: Re: [SPSSX-L] Interpreting Mediation results

 

Hello,

Please may you help me with an additional question?

Do you know what effect size has Hayes used in his process? I've been through his book where he talks about the 6 different effect sizes that process gives in the result section:
Partial, complete, r_square, kappa, etc. But which one has he used in the total, direct, indirect effects, etc.

Would appreciate your help.
Thanks,
Vijaita

Sent from Yahoo Mail on Android

 


From: peter link [via SPSSX Discussion] <[hidden email]>;
To: psy_vm <[hidden email]>;
Subject: Re: Interpreting Mediation results
Sent: Thu, Jul 24, 2014 5:12:02 PM

 

The short answer is that if you are using a method such as bootstrapping to
test the Indirect Effect, then you need to only find a significant ab-path.
If you are using a method like The Test of Joint Significance (TJS), then
you would look to see if both a and b are different from 0.

In your example - The test of the indirect effect is under "Total, Direct,
and Indirect Effects".  The CI for the Indirect Effect is [.0009,.1240]
which doesn't include zero, so you would conclude that it is statistically
significant (using bootstrapping criterion).  So, you could have an "a" or
"b" path that is non-significant, but the "ab" path is significant.

However, the Total Effect is non-significant, indicating that there isn't an
effect to mediate, to begin with. Do you expect a Total Effect (should X
predict Y)? The Direct and Indirect Effects have the same sign, so you
aren't dealing with "Inconsistent Mediation" (a suppression effect).  So,
you could talk about having an Indirect Effect but not Mediation.  Also, you
should look at the size of the Indirect Effect.  It seems small - is this an
important effect or is it trivial?

pl

-----Original Message-----
From: SPSSX(r) Discussion [mailto:[hidden email]] On Behalf Of
psy_vm
Sent: Thursday, July 24, 2014 12:17 AM
To: [hidden email]
Subject: [SPSSX-L] Interpreting Mediation results

Hello,

I have a few questions regarding interpretation of my results for Mediation
using Hayes' Process macro. The key point for finding significance is to see
that the Class Interval does not include zero. However, in my mediation
model, although the indirect effect CI doesn't include zero, the initial
Models's CI (for bcope_ma, under Duration) includes zero. Should I still
count my indirect effects as significant even though initial model for
mediation is not significant?

Results pasted below. Please Help! Thanks in advance!

Model = 4
    Y = qoltot
    X = duration
    M = bcope_ma

Sample size
         70

**************************************************************************
Outcome: bcope_ma

Model Summary
          R        R-sq          F            df1        df2          p
      .1830      .0335     2.3550     1.0000    68.0000      .1295

Model
                   coeff          se              t          p       LLCI

ULCI
constant    22.5169     1.3151    17.1223      .0000    19.8927    25.1411
duration     -.0388      .0253    -1.5346      .1295     -.0893      .0117

**************************************************************************
Outcome: qoltot

Model Summary
          R          R-sq          F          df1        df2          p
      .3234      .1046     3.9140     2.0000    67.0000      .0247

Model
                    coeff         se          t               p       LLCI

ULCI
constant      91.2951     9.5536     9.5560      .0000    72.2258   110.3643
bcope_ma    -1.0460      .3823    -2.7364      .0079    -1.8091     -.2830
duration      .0059          .0811      .0725      .9425     -.1559    
.1677

************************** TOTAL EFFECT MODEL ****************************
Outcome: qoltot

Model Summary
          R        R-sq           F           df1        df2          p
      .0674      .0045      .3102     1.0000    68.0000      .5794

Model
                  coeff         se            t               p       LLCI

ULCI
constant    67.7413     4.3387    15.6134      .0000    59.0836    76.3990
duration      .0465      .0834      .5570      .5794     -.1200      .2129

***************** TOTAL, DIRECT, AND INDIRECT EFFECTS ********************

Total effect of X on Y
     Effect         SE             t          p           LLCI       ULCI
      .0465      .0834      .5570      .5794     -.1200      .2129

Direct effect of X on Y
     Effect         SE          t             p         LLCI       ULCI
      .0059      .0811      .0725      .9425     -.1559      .1677

Indirect effect of X on Y
                    Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0406      .0311      .0009      .1240

Partially standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0022      .0016      .0000      .0068

Completely standardized indirect effect of X on Y
                   Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0589      .0411      .0017      .1650

Ratio of indirect to total effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .8736   149.0933      .1603    53.5001

Ratio of indirect to direct effect of X on Y
                  Effect    Boot SE   BootLLCI   BootULCI
bcope_ma     6.9093    17.9156     3.4423   275.8767

R-squared mediation effect size (R-sq_med)
                 Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0045      .0173     -.0184      .0543

Preacher and Kelley (2011) Kappa-squared
             Effect    Boot SE   BootLLCI   BootULCI
bcope_ma      .0601      .0401      .0066      .1692

Normal theory tests for indirect effect
     Effect         se          Z          p
      .0406      .0318     1.2753      .2022

******************** ANALYSIS NOTES AND WARNINGS *************************

Number of bootstrap samples for bias corrected bootstrap confidence
intervals:     1000

Level of confidence for all confidence intervals in output:    95.00

NOTE: Some cases were deleted due to missing data.  The number of such cases
was:  33




--
View this message in context:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results
-tp5726809.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


If you reply to this email, your message will be added to the discussion below:

http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726816.html

To unsubscribe from Interpreting Mediation results, click here.
NAML

 


View this message in context: Re: Interpreting Mediation results
Sent from the SPSSX Discussion mailing list archive at Nabble.com.
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


If you reply to this email, your message will be added to the discussion below:

http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726985.html

To unsubscribe from Interpreting Mediation results, click here.
NAML

 


View this message in context: Re: Interpreting Mediation results
Sent from the SPSSX Discussion mailing list archive at Nabble.com.
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


If you reply to this email, your message will be added to the discussion below:
http://spssx-discussion.1045642.n5.nabble.com/Interpreting-Mediation-results-tp5726809p5726992.html
To unsubscribe from Interpreting Mediation results, click here.
NAML