Mc Nemar Test for 1:2 Case-Control ?

classic Classic list List threaded Threaded
23 messages Options
12
Reply | Threaded
Open this post in threaded view
|

Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo
Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

Eins
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Marta Garcia-Granero
Hi:

Look for stratified Mantel-Haenszel odds ratio (available at CROSSTABS), or use conditional logistic regression (SPSS can be tricked to do it using a Cox regression model).

HTH,
Marta GG

El 10/03/2016 a las 6:46, E. Bernardo escribió:
Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

Eins
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Marta Garcia-Granero
In reply to this post by E. Bernardo
Ooooops! Do you have only summarized data or raw data?

You will not be able to permor any of the two methods I proposed before unless your data set looks like this:

MatchGroup    CaseControl    HealthStatus
1    1    1
1    0    0
1    0    Whatever...
2    1    0
2    0   1
2    0    Whatever...
3 ...
3 ...
3
4
4
4
...

El 10/03/2016 a las 6:46, E. Bernardo escribió:
Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

Eins
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Rich Ulrich
In reply to this post by E. Bernardo
As Marta G-G says, you are very limited if you don't have the raw data.
And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
simple pair.

Given the summary numbers, you have a simple contingency table.
If those are the numbers, there is not much doubt about a difference.

However, if the "matching" was important, then taking it into account
would reduce the size of the apparent effect.  That's simple logic. ("Why do we
want to match?  - Because those variables might account for the outcome.")

Often, trying to match is useful for collecting/selecting Controls to use.  However,
I have long been hostile to analyzing such data as "matched", given (a) the
imprecision of much of such matching ("age within 4 years"); (b) the loss of
d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
essentially as categories instead of as continuous measures.  - The alternative
of using the matching variables as covariates (in a logistic regression, here)
is almost bound to be more powerful and more robust.  - That, in turn, requires
that the data be entered with a line for each subject, with the Group, Status,
and personal covariates.

--
Rich Ulrich




Date: Thu, 10 Mar 2016 05:46:45 +0000
From: [hidden email]
Subject: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo
Thank you for your comments, Marta and Rich.

Yes, raw data are available.  The summary data are just my example to illustrate my data.
Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.

Marta, following the variable names you provided in the previous email, here is my syntax:

DATASET ACTIVATE DataSet2.
COXREG Casecontrol
  /STATUS=HeathStatus
  /STRATA=Matchgroup
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

What is wrong with my syntax?

Thank you.


On Friday, March 11, 2016 2:27 AM, Rich Ulrich <[hidden email]> wrote:


As Marta G-G says, you are very limited if you don't have the raw data.
And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
simple pair.

Given the summary numbers, you have a simple contingency table.
If those are the numbers, there is not much doubt about a difference.

However, if the "matching" was important, then taking it into account
would reduce the size of the apparent effect.  That's simple logic. ("Why do we
want to match?  - Because those variables might account for the outcome.")

Often, trying to match is useful for collecting/selecting Controls to use.  However,
I have long been hostile to analyzing such data as "matched", given (a) the
imprecision of much of such matching ("age within 4 years"); (b) the loss of
d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
essentially as categories instead of as continuous measures.  - The alternative
of using the matching variables as covariates (in a logistic regression, here)
is almost bound to be more powerful and more robust.  - That, in turn, requires
that the data be entered with a line for each subject, with the Group, Status,
and personal covariates.

--
Rich Ulrich




Date: Thu, 10 Mar 2016 05:46:45 +0000
From: [hidden email]
Subject: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Marta Garcia-Granero
Hi

I don't think your syntax is correct. You have a create a false " time variable" first , let's call it pseudotime, with values EQ 2 for controls and EQ 1 for cases. This variable acts as time on the COXREG command. Status is defined by CaseControl, the covariable/factor is HealthStatus, and Matchgroup acts as strata variable.

Did you try the Mantel-Haenszel statistic approach?

Sorry I can't be more detailed/helpful, but I'm at an airport right now, with just my laptop (away from the desktop office computer with all my old syntax collection.

Regards,
Marta Garcia-Granero

El 12/03/2016 a las 4:36, E. Bernardo escribió:
Thank you for your comments, Marta and Rich.

Yes, raw data are available.  The summary data are just my example to illustrate my data.
Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.

Marta, following the variable names you provided in the previous email, here is my syntax:

DATASET ACTIVATE DataSet2.
COXREG Casecontrol
  /STATUS=HeathStatus
  /STRATA=Matchgroup
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

What is wrong with my syntax?

Thank you.


On Friday, March 11, 2016 2:27 AM, Rich Ulrich [hidden email] wrote:


As Marta G-G says, you are very limited if you don't have the raw data.
And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
simple pair.

Given the summary numbers, you have a simple contingency table.
If those are the numbers, there is not much doubt about a difference.

However, if the "matching" was important, then taking it into account
would reduce the size of the apparent effect.  That's simple logic. ("Why do we
want to match?  - Because those variables might account for the outcome.")

Often, trying to match is useful for collecting/selecting Controls to use.  However,
I have long been hostile to analyzing such data as "matched", given (a) the
imprecision of much of such matching ("age within 4 years"); (b) the loss of
d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
essentially as categories instead of as continuous measures.  - The alternative
of using the matching variables as covariates (in a logistic regression, here)
is almost bound to be more powerful and more robust.  - That, in turn, requires
that the data be entered with a line for each subject, with the Group, Status,
and personal covariates.

--
Rich Ulrich




Date: Thu, 10 Mar 2016 05:46:45 +0000
From: [hidden email]
Subject: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD



===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Marta Garcia-Granero
I remembered Raynald had the code I posted some years ago on his great webpage:

http://spsstools.net/en/syntax/447/

HTH,
Marta

El 12/03/2016 a las 10:35, Marta Garcia-Granero escribió:
Hi

I don't think your syntax is correct. You have a create a false " time variable" first , let's call it pseudotime, with values EQ 2 for controls and EQ 1 for cases. This variable acts as time on the COXREG command. Status is defined by CaseControl, the covariable/factor is HealthStatus, and Matchgroup acts as strata variable.

Did you try the Mantel-Haenszel statistic approach?

Sorry I can't be more detailed/helpful, but I'm at an airport right now, with just my laptop (away from the desktop office computer with all my old syntax collection.

Regards,
Marta Garcia-Granero

El 12/03/2016 a las 4:36, E. Bernardo escribió:
Thank you for your comments, Marta and Rich.

Yes, raw data are available.  The summary data are just my example to illustrate my data.
Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.

Marta, following the variable names you provided in the previous email, here is my syntax:

DATASET ACTIVATE DataSet2.
COXREG Casecontrol
  /STATUS=HeathStatus
  /STRATA=Matchgroup
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

What is wrong with my syntax?

Thank you.


On Friday, March 11, 2016 2:27 AM, Rich Ulrich [hidden email] wrote:


As Marta G-G says, you are very limited if you don't have the raw data.
And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
simple pair.

Given the summary numbers, you have a simple contingency table.
If those are the numbers, there is not much doubt about a difference.

However, if the "matching" was important, then taking it into account
would reduce the size of the apparent effect.  That's simple logic. ("Why do we
want to match?  - Because those variables might account for the outcome.")

Often, trying to match is useful for collecting/selecting Controls to use.  However,
I have long been hostile to analyzing such data as "matched", given (a) the
imprecision of much of such matching ("age within 4 years"); (b) the loss of
d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
essentially as categories instead of as continuous measures.  - The alternative
of using the matching variables as covariates (in a logistic regression, here)
is almost bound to be more powerful and more robust.  - That, in turn, requires
that the data be entered with a line for each subject, with the Group, Status,
and personal covariates.

--
Rich Ulrich




Date: Thu, 10 Mar 2016 05:46:45 +0000
From: [hidden email]
Subject: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD




===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Martin Holt-3
Whilst acknowledging Marta's contributions, you might like to post an enquiry on the Google Group MedStats...I'm biased, I founded it :). There are all the most notable statisticians (eg Bland, Altman, Senn, Harrell Jnr, Campbell to name but a few.) 

To post you need to join; thereafter all discussions are visible.

Best Wishes,

Martin P. Holt
 
Freelance Medical Statistician

If you can't explain it simply, you don't understand it well enough.....Einstein

Linked In: 
https://www.linkedin.com/in/martin-holt-3b800b48?trk=nav_responsive_tab_profile



From: Marta Garcia-Granero <[hidden email]>
To: [hidden email]
Sent: Saturday, 12 March 2016, 11:17
Subject: Re: Mc Nemar Test for 1:2 Case-Control ?

I remembered Raynald had the code I posted some years ago on his great webpage:

http://spsstools.net/en/syntax/447/

HTH,
Marta

El 12/03/2016 a las 10:35, Marta Garcia-Granero escribió:
Hi

I don't think your syntax is correct. You have a create a false " time variable" first , let's call it pseudotime, with values EQ 2 for controls and EQ 1 for cases. This variable acts as time on the COXREG command. Status is defined by CaseControl, the covariable/factor is HealthStatus, and Matchgroup acts as strata variable.

Did you try the Mantel-Haenszel statistic approach?

Sorry I can't be more detailed/helpful, but I'm at an airport right now, with just my laptop (away from the desktop office computer with all my old syntax collection.

Regards,
Marta Garcia-Granero

El 12/03/2016 a las 4:36, E. Bernardo escribió:
Thank you for your comments, Marta and Rich.

Yes, raw data are available.  The summary data are just my example to illustrate my data.
Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.

Marta, following the variable names you provided in the previous email, here is my syntax:

DATASET ACTIVATE DataSet2.
COXREG Casecontrol
  /STATUS=HeathStatus
  /STRATA=Matchgroup
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

What is wrong with my syntax?

Thank you.


On Friday, March 11, 2016 2:27 AM, Rich Ulrich [hidden email] wrote:


As Marta G-G says, you are very limited if you don't have the raw data.
And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
simple pair.

Given the summary numbers, you have a simple contingency table.
If those are the numbers, there is not much doubt about a difference.

However, if the "matching" was important, then taking it into account
would reduce the size of the apparent effect.  That's simple logic. ("Why do we
want to match?  - Because those variables might account for the outcome.")

Often, trying to match is useful for collecting/selecting Controls to use.  However,
I have long been hostile to analyzing such data as "matched", given (a) the
imprecision of much of such matching ("age within 4 years"); (b) the loss of
d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
essentially as categories instead of as continuous measures.  - The alternative
of using the matching variables as covariates (in a logistic regression, here)
is almost bound to be more powerful and more robust.  - That, in turn, requires
that the data be entered with a line for each subject, with the Group, Status,
and personal covariates.

--
Rich Ulrich




Date: Thu, 10 Mar 2016 05:46:45 +0000
From: [hidden email]
Subject: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

===================== To manage your subscription to SPSSX-L, send a message to [hidden email][hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD




===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Bruce Weaver
Administrator
As Martin knows, I am also a member of the MedStats group.  It is indeed a very good group for discussion of medical statistics (or biostatistics).  However, based on what I have seen there, I would not recommend it as a place to seek advice on how to do a given task using SPSS.  The likely response would be something like, <dismissive tone>"Why are you using SPSS?</dismissive tone>  You ought to be using R/SAS/Stata!"

Perhaps I'm overstating a bit...but just a bit!  ;-)

IMHO, this forum will be pretty hard to beat when it comes to advice on how to do task X using SPSS.

Cheers,
Bruce


Martin Holt-3 wrote
Whilst acknowledging Marta's contributions, you might like to post an enquiry on the Google Group MedStats...I'm biased, I founded it :). There are all the most notable statisticians (eg Bland, Altman, Senn, Harrell Jnr, Campbell to name but a few.) 
To post you need to join; thereafter all discussions are visible.
Best Wishes,
Martin P. Holt Freelance Medical Statistician
If you can't explain it simply, you don't understand it well enough.....Einstein
Linked In: https://www.linkedin.com/in/martin-holt-3b800b48?trk=nav_responsive_tab_profile

 
      From: Marta Garcia-Granero <[hidden email]>
 To: [hidden email] 
 Sent: Saturday, 12 March 2016, 11:17
 Subject: Re: Mc Nemar Test for 1:2 Case-Control ?
   
 I remembered Raynald had the code I posted some years ago on his great webpage:
 
 http://spsstools.net/en/syntax/447/
 
 HTH,
 Marta
 
 El 12/03/2016 a las 10:35, Marta Garcia-Granero escribió:
 
 
 Hi
 
 I don't think your syntax is correct. You have a create a false " time variable" first , let's call it pseudotime, with values EQ 2 for controls and EQ 1 for cases. This variable acts as time on the COXREG command. Status is defined by CaseControl, the covariable/factor is HealthStatus, and Matchgroup acts as strata variable.
 
 Did you try the Mantel-Haenszel statistic approach?
 
 Sorry I can't be more detailed/helpful, but I'm at an airport right now, with just my laptop (away from the desktop office computer with all my old syntax collection.
 
 Regards,
 Marta Garcia-Granero
 
 El 12/03/2016 a las 4:36, E. Bernardo escribió:
 
  Thank you for your comments, Marta and Rich.
  Yes, raw data are available.  The summary data are just my example to illustrate my data. Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.
  Marta, following the variable names you provided in the previous email, here is my syntax:
  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus   /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
 What is wrong with my syntax?
  Thank you.
 
      On Friday, March 11, 2016 2:27 AM, Rich Ulrich <[hidden email]> wrote:
 
 
   #yiv4472739436 --.yiv4472739436hmmessage P{margin:0px;padding:0px;}#yiv4472739436 body.yiv4472739436hmmessage{font-size:12pt;font-family:Calibri;}#yiv4472739436   As Marta G-G says, you are very limited if you don't have the raw data.
 And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
 simple pair.
 
 Given the summary numbers, you have a simple contingency table.
 If those are the numbers, there is not much doubt about a difference.
 
 However, if the "matching" was important, then taking it into account
 would reduce the size of the apparent effect.  That's simple logic. ("Why do we
 want to match?  - Because those variables might account for the outcome.")
 
 Often, trying to match is useful for collecting/selecting Controls to use.  However,
 I have long been hostile to analyzing such data as "matched", given (a) the
 imprecision of much of such matching ("age within 4 years"); (b) the loss of
 d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
 essentially as categories instead of as continuous measures.  - The alternative
 of using the matching variables as covariates (in a logistic regression, here)
 is almost bound to be more powerful and more robust.  - That, in turn, requires
 that the data be entered with a line for each subject, with the Group, Status,
 and personal covariates.
 
 --
 Rich Ulrich
 
 
 
   Date: Thu, 10 Mar 2016 05:46:45 +0000
 From: [hidden email]
 Subject: Mc Nemar Test for 1:2 Case-Control ?
 To: [hidden email]
 
    Dear Members,
  Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of  the gathered data looks like as follows:
  Group     HealthStatus   Count Case              +                50 Case              -                 50 Control          +                 10 Control           -                 190
  Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.
  Thank you.  
     ===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD  
 
     
 
 
 =====================To manage your subscription to SPSSX-L, send a message [hidden email] (not to SPSSX-L), with no body text except thecommand. To leave the list, send the commandSIGNOFF SPSSX-LFor a list of commands to manage subscriptions, send the commandINFO REFCARD

   

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
--
Bruce Weaver
bweaver@lakeheadu.ca
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

PLEASE NOTE THE FOLLOWING: 
1. My Hotmail account is not monitored regularly. To send me an e-mail, please use the address shown above.
2. The SPSSX Discussion forum on Nabble is no longer linked to the SPSSX-L listserv administered by UGA (https://listserv.uga.edu/).
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo
In reply to this post by Marta Garcia-Granero
Thank you for the link. I think my SPSS syntax now is correct.
COXREG faketime
  /STATUS=outcome(1)
  /STRATA=Stratum
  /METHOD=ENTER X 
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

However there is warning as part of the outputs. This warning is:
"Since coefficients did not converge, no further models will be fitted."

And the odds ratio is too large: Exp(B) = 74.769

Is the odds ratio wrong?

SPSS outputs are pasted below.

Eins


Warnings
Since coefficients did not converge, no further models will be fitted.
Case Processing Summary
  N Percent
Cases available in analysis Eventa 47 33.3%
Censored 94 66.7%
Total 141 100.0%
Cases dropped Cases with missing values 0 0.0%
Cases with negative time 0 0.0%
Censored cases before the earliest event in a stratum 0 0.0%
Total 0 0.0%
Total 141 100.0%
a. Dependent Variable: faketime
Stratum Statusa
Stratum Event Censored Censored Percent
         1.0 1 2 66.7%
         2.0 1 2 66.7%
         3.0 1 2 66.7%
         4.0 1 2 66.7%
         5.0 1 2 66.7%
         6.0 1 2 66.7%
         7.0 1 2 66.7%
         8.0 1 2 66.7%
         9.0 1 2 66.7%
        10.0 1 2 66.7%
        11.0 1 2 66.7%
        12.0 1 2 66.7%
        13.0 1 2 66.7%
        14.0 1 2 66.7%
        15.0 1 2 66.7%
        16.0 1 2 66.7%
        17.0 1 2 66.7%
        18.0 1 2 66.7%
        19.0 1 2 66.7%
        20.0 1 2 66.7%
        21.0 1 2 66.7%
        22.0 1 2 66.7%
        23.0 1 2 66.7%
        24.0 1 2 66.7%
        25.0 1 2 66.7%
        26.0 1 2 66.7%
        27.0 1 2 66.7%
        28.0 1 2 66.7%
        29.0 1 2 66.7%
        30.0 1 2 66.7%
        31.0 1 2 66.7%
        32.0 1 2 66.7%
        33.0 1 2 66.7%
        34.0 1 2 66.7%
        35.0 1 2 66.7%
        36.0 1 2 66.7%
        37.0 1 2 66.7%
        38.0 1 2 66.7%
        39.0 1 2 66.7%
        40.0 1 2 66.7%
        41.0 1 2 66.7%
        42.0 1 2 66.7%
        43.0 1 2 66.7%
        44.0 1 2 66.7%
        45.0 1 2 66.7%
        46.0 1 2 66.7%
        47.0 1 2 66.7%
Total 47 94 66.7%
a. The strata variable is : Stratum
Block 0: Beginning Block
Omnibus Tests of Model Coefficients
-2 Log Likelihood
103.270
Block 1: Method = Enter
Iteration Historyb
  -2 Log Likelihooda Coefficient
X
1 80.334 2.071
2 76.835 3.255
3 75.745 4.314
a. Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 103.270
b. At least one coefficient is tending to infinity after 3 iterations
Omnibus Tests of Model Coefficientsa
-2 Log Likelihood Overall (score) Change From Previous Step Change From Previous Block
Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
75.745 20.024 1 .000 27.524 1 .000 27.524 1 .000
a. Beginning Block Number 1. Method = Enter
Variables in the Equation
  B SE Wald df Sig. Exp(B)
X 4.314 1.861 5.375 1 .020 74.769
Covariate Means
  Mean
X .262


On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero <[hidden email]> wrote:


Hi

I don't think your syntax is correct. You have a create a false " time variable" first , let's call it pseudotime, with values EQ 2 for controls and EQ 1 for cases. This variable acts as time on the COXREG command. Status is defined by CaseControl, the covariable/factor is HealthStatus, and Matchgroup acts as strata variable.

Did you try the Mantel-Haenszel statistic approach?

Sorry I can't be more detailed/helpful, but I'm at an airport right now, with just my laptop (away from the desktop office computer with all my old syntax collection.

Regards,
Marta Garcia-Granero

El 12/03/2016 a las 4:36, E. Bernardo escribió:
Thank you for your comments, Marta and Rich.

Yes, raw data are available.  The summary data are just my example to illustrate my data.
Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.

Marta, following the variable names you provided in the previous email, here is my syntax:

DATASET ACTIVATE DataSet2.
COXREG Casecontrol
  /STATUS=HeathStatus
  /STRATA=Matchgroup
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

What is wrong with my syntax?

Thank you.


On Friday, March 11, 2016 2:27 AM, Rich Ulrich [hidden email] wrote:


As Marta G-G says, you are very limited if you don't have the raw data.
And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
simple pair.

Given the summary numbers, you have a simple contingency table.
If those are the numbers, there is not much doubt about a difference.

However, if the "matching" was important, then taking it into account
would reduce the size of the apparent effect.  That's simple logic. ("Why do we
want to match?  - Because those variables might account for the outcome.")

Often, trying to match is useful for collecting/selecting Controls to use.  However,
I have long been hostile to analyzing such data as "matched", given (a) the
imprecision of much of such matching ("age within 4 years"); (b) the loss of
d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
essentially as categories instead of as continuous measures.  - The alternative
of using the matching variables as covariates (in a logistic regression, here)
is almost bound to be more powerful and more robust.  - That, in turn, requires
that the data be entered with a line for each subject, with the Group, Status,
and personal covariates.

--
Rich Ulrich




Date: Thu, 10 Mar 2016 05:46:45 +0000
From: [hidden email]
Subject: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Dear Members,

Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the gathered data looks like as follows:

Group     HealthStatus   Count
Case              +                50
Case              -                 50
Control          +                 10
Control           -                 190

Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.

Thank you.

===================== To manage your subscription to SPSSX-L, send a message to [hidden email][hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD



===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Bruce Weaver
Administrator
Did you try increasing the number of iterations on the /CRITERIA sub-command?  E.g.,

COXREG faketime
  /STATUS=outcome(1)
  /STRATA=Stratum
  /METHOD=ENTER X
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).



E. Bernardo wrote
Thank you for the link. I think my SPSS syntax now is correct.COXREG faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
However there is warning as part of the outputs. This warning is:"Since coefficients did not converge, no further models will be fitted."
And the odds ratio is too large: Exp(B) = 74.769
Is the odds ratio wrong?
SPSS outputs are pasted below.
Eins


| Warnings |  |  |  |  |  |  |  |  |  |
| Since coefficients did not converge, no further models will be fitted. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Case Processing Summary |  |  |  |  |  |  |
|   | N | Percent |  |  |  |  |  |  |
| Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
| Censored | 94 | 66.7% |  |  |  |  |  |  |
| Total | 141 | 100.0% |  |  |  |  |  |  |
| Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  |  |
| Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
| Censored cases before the earliest event in a stratum | 0 | 0.0% |  |  |  |  |  |  |
| Total | 0 | 0.0% |  |  |  |  |  |  |
| Total | 141 | 100.0% |  |  |  |  |  |  |
| a. Dependent Variable: faketime |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Stratum Statusa |  |  |  |  |  |  |
| Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
|          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
|         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
| Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
| a. The strata variable is : Stratum |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
| -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
| 103.270 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Iteration Historyb |  |  |  |  |  |  |  |
|   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
| X |  |  |  |  |  |  |  |
| 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
| 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
| 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
| a. Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 103.270 |  |  |  |  |  |  |  |
| b. At least one coefficient is tending to infinity after 3 iterations |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Omnibus Tests of Model Coefficientsa |
| -2 Log Likelihood | Overall (score) | Change From Previous Step | Change From Previous Block |
| Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df | Sig. |
| 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
| a. Beginning Block Number 1. Method = Enter |
|  |  |  |  |  |  |  |  |  |  |
| Variables in the Equation |  |  |  |
|   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
| X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Covariate Means |  |  |  |  |  |  |  |  |
|   | Mean |  |  |  |  |  |  |  |  |
| X | .262 |  |  |  |  |  |  |  |  |

 

    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero <[hidden email]> wrote:
 

  Hi
 
 I don't think your syntax is correct. You have a create a false " time variable" first , let's call it pseudotime, with values EQ 2 for controls and EQ 1 for cases. This variable acts as time on the COXREG command. Status is defined by CaseControl, the covariable/factor is HealthStatus, and Matchgroup acts as strata variable.
 
 Did you try the Mantel-Haenszel statistic approach?
 
 Sorry I can't be more detailed/helpful, but I'm at an airport right now, with just my laptop (away from the desktop office computer with all my old syntax collection.
 
 Regards,
 Marta Garcia-Granero
 
 El 12/03/2016 a las 4:36, E. Bernardo escribió:
 
  Thank you for your comments, Marta and Rich.
  Yes, raw data are available.  The summary data are just my example to illustrate my data. Actually, I tried to use the C regression (as trick to conduct Conditional regression in SPSS).  However, the SPSS reports only the -2LL. I dont know if I did the correct trick.
  Marta, following the variable names you provided in the previous email, here is my syntax:
  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus   /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
 What is wrong with my syntax?
  Thank you.
 
      On Friday, March 11, 2016 2:27 AM, Rich Ulrich <[hidden email]> wrote:
 
 
   #yiv5634543243 --.yiv5634543243hmmessage P{margin:0px;padding:0px;}#yiv5634543243 body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243   As Marta G-G says, you are very limited if you don't have the raw data.
 And, abstractly, I'm not grasping how the McNemar Test would fit, even for a
 simple pair.
 
 Given the summary numbers, you have a simple contingency table.
 If those are the numbers, there is not much doubt about a difference.
 
 However, if the "matching" was important, then taking it into account
 would reduce the size of the apparent effect.  That's simple logic. ("Why do we
 want to match?  - Because those variables might account for the outcome.")
 
 Often, trying to match is useful for collecting/selecting Controls to use.  However,
 I have long been hostile to analyzing such data as "matched", given (a) the
 imprecision of much of such matching ("age within 4 years"); (b) the loss of
 d.f.  in the analysis; and, (c) the weakness of treating the matching covariates
 essentially as categories instead of as continuous measures.  - The alternative
 of using the matching variables as covariates (in a logistic regression, here)
 is almost bound to be more powerful and more robust.  - That, in turn, requires
 that the data be entered with a line for each subject, with the Group, Status,
 and personal covariates.
 
 --
 Rich Ulrich
 
 
 
   Date: Thu, 10 Mar 2016 05:46:45 +0000
 From: [hidden email]
 Subject: Mc Nemar Test for 1:2 Case-Control ?
 To: [hidden email]
 
    Dear Members,
  Consider the 1:2 matched study where each case is matched with 2 controls.  Health status (classified as "+" or "-" ) of all cases and controls were recorded. Summary of the  gathered data looks like as follows:
  Group     HealthStatus   Count Case              +                50 Case              -                 50 Control          +                 10 Control           -                 190
  Can we use McNemar Test to test if the proportion of cases on the "+" HealthStatus is greater than the controls? Please suggest an appropriate test if McNemar test is not appropriate.
  Thank you.  
     ===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD  
 
     
 
 =====================To manage your subscription to SPSSX-L, send a message [hidden email] (not to SPSSX-L), with no body text except thecommand. To leave the list, send the commandSIGNOFF SPSSX-LFor a list of commands to manage subscriptions, send the commandINFO REFCARD


=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
--
Bruce Weaver
bweaver@lakeheadu.ca
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

PLEASE NOTE THE FOLLOWING: 
1. My Hotmail account is not monitored regularly. To send me an e-mail, please use the address shown above.
2. The SPSSX Discussion forum on Nabble is no longer linked to the SPSSX-L listserv administered by UGA (https://listserv.uga.edu/).
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo
Thank you Bruce for your comments.

The warning was "
Since coefficients did not converge, no further models will be fitted."
The Iteration History states that "At least one coefficient is tending to infinity after 3 iterations".
So increasing the number of iteration from 20 to 50 does not help since it stopped at the 3rd iteration.  
Any further suggestion to solve the problem is highly solicited.

Thank you.



On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver <[hidden email]> wrote:


Did you try increasing the number of iterations on the /CRITERIA sub-command?
E.g.,

COXREG faketime
  /STATUS=outcome(1)
  /STRATA=Stratum
  /METHOD=ENTER X
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).




E. Bernardo wrote

> Thank you for the link. I think my SPSS syntax now is correct.COXREG
> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
> However there is warning as part of the outputs. This warning is:"Since
> coefficients did not converge, no further models will be fitted."
> And the odds ratio is too large: Exp(B) = 74.769
> Is the odds ratio wrong?
> SPSS outputs are pasted below.
> Eins
>
>
> | Warnings |  |  |  |  |  |  |  |  |  |
> | Since coefficients did not converge, no further models will be fitted. |
> |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Case Processing Summary |  |  |  |  |  |  |
> |   | N | Percent |  |  |  |  |  |  |
> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
> | Censored | 94 | 66.7% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  |  |
> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  |  |
> |  |  |  |
> | Total | 0 | 0.0% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
> | a. Dependent Variable: faketime |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Stratum Statusa |  |  |  |  |  |  |
> | Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
> |          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> | Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
> | a. The strata variable is : Stratum |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
> | -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
> | 103.270 |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Iteration Historyb |  |  |  |  |  |  |  |
> |   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
> | X |  |  |  |  |  |  |  |
> | 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
> | 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
> | 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
> | a. Beginning Block Number 0, initial Log Likelihood function: -2 Log
> likelihood: 103.270 |  |  |  |  |  |  |  |
> | b. At least one coefficient is tending to infinity after 3 iterations |
> |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Omnibus Tests of Model Coefficientsa |
> | -2 Log Likelihood | Overall (score) | Change From Previous Step | Change
> From Previous Block |
> | Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df | Sig.
> |
> | 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
> | a. Beginning Block Number 1. Method = Enter |
> |  |  |  |  |  |  |  |  |  |  |
> | Variables in the Equation |  |  |  |
> |   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
> | X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Covariate Means |  |  |  |  |  |  |  |  |
> |   | Mean |  |  |  |  |  |  |  |  |
> | X | .262 |  |  |  |  |  |  |  |  |
>

>
>    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero &lt;

> mgarciagranero@

> &gt; wrote:

>
>  Hi

>  I don't think your syntax is correct. You have a create a false " time
> variable" first , let's call it pseudotime, with values EQ 2 for controls
> and EQ 1 for cases. This variable acts as time on the COXREG command.
> Status is defined by CaseControl, the covariable/factor is HealthStatus,
> and Matchgroup acts as strata variable.

>  Did you try the Mantel-Haenszel statistic approach?

>  Sorry I can't be more detailed/helpful, but I'm at an airport right now,
> with just my laptop (away from the desktop office computer with all my old
> syntax collection.

>  Regards,
>  Marta Garcia-Granero

>  El 12/03/2016 a las 4:36, E. Bernardo escribió:

>  Thank you for your comments, Marta and Rich.
>  Yes, raw data are available.  The summary data are just my example to
> illustrate my data. Actually, I tried to use the C regression (as trick to
> conduct Conditional regression in SPSS).  However, the SPSS reports only
> the -2LL. I dont know if I did the correct trick.
>  Marta, following the variable names you provided in the previous email,
> here is my syntax:
>  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus  
> /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>  What is wrong with my syntax?
>  Thank you.

>      On Friday, March 11, 2016 2:27 AM, Rich Ulrich &lt;

> rich-ulrich@

> &gt; wrote:


>    #yiv5634543243 --.yiv5634543243hmmessage
> P{margin:0px;padding:0px;}#yiv5634543243
> body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243 
> As Marta G-G says, you are very limited if you don't have the raw data.
>  And, abstractly, I'm not grasping how the McNemar Test would fit, even
> for a
>  simple pair.

>  Given the summary numbers, you have a simple contingency table.
>  If those are the numbers, there is not much doubt about a difference.

>  However, if the "matching" was important, then taking it into account
>  would reduce the size of the apparent effect.  That's simple logic. ("Why
> do we
>  want to match?  - Because those variables might account for the
> outcome.")

>  Often, trying to match is useful for collecting/selecting Controls to
> use.  However,
>  I have long been hostile to analyzing such data as "matched", given (a)
> the
>  imprecision of much of such matching ("age within 4 years"); (b) the loss
> of
>  d.f.  in the analysis; and, (c) the weakness of treating the matching
> covariates
>  essentially as categories instead of as continuous measures.  - The
> alternative
>  of using the matching variables as covariates (in a logistic regression,
> here)
>  is almost bound to be more powerful and more robust.  - That, in turn,
> requires
>  that the data be entered with a line for each subject, with the Group,
> Status,
>  and personal covariates.

>  --
>  Rich Ulrich



>    Date: Thu, 10 Mar 2016 05:46:45 +0000
>  From:

> [hidden email]

>  Subject: Mc Nemar Test for 1:2 Case-Control ?
>  To:

> [hidden email]


>    Dear Members,
>  Consider the 1:2 matched study where each case is matched with 2
> controls.  Health status (classified as "+" or "-" ) of all cases and
> controls were recorded. Summary of the  gathered data looks like as
> follows:
>  Group     HealthStatus   Count Case              +                50
> Case              -                 50 Control          +                
> 10 Control           -                 190
>  Can we use McNemar Test to test if the proportion of cases on the "+"
> HealthStatus is greater than the controls? Please suggest an appropriate
> test if McNemar test is not appropriate.
>  Thank you. 
>      ===================== To manage your subscription to SPSSX-L, send a
> message to

> [hidden email]

>  (not to SPSSX-L), with no body text except the command. To leave the
> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
> subscriptions, send the command INFO REFCARD 

>     

>  =====================To manage your subscription to SPSSX-L, send a
> message

> [hidden email]

>  (not to SPSSX-L), with no body text except thecommand. To leave the list,
> send the commandSIGNOFF SPSSX-LFor a list of commands to manage
> subscriptions, send the commandINFO REFCARD
>
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> [hidden email]

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
--
Bruce Weaver
[hidden email]
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

NOTE: My Hotmail account is not monitored regularly.
To send me an e-mail, please use the address shown above.

--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731793.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Rich Ulrich
Your original data showed an OR of 19, with 300 cases -
The 2x2 table had cells of {50,50; 190;10}.  Is 78 unreasonable?

This run shows N= 141.  Rather a loss.  What does the 2x2 table look like?
(And, What happened to the other half of the data?)

Getting an infinite coefficient is a symptom of having perfect separation.
I never used CoxReg for case control, so I can't vouch for your syntax -
in case "perfect separation" is not the answer.

--
Rich Ulrich



Date: Wed, 23 Mar 2016 01:25:39 +0000
From: [hidden email]
Subject: Re: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Thank you Bruce for your comments.

The warning was "
Since coefficients did not converge, no further models will be fitted."
The Iteration History states that "At least one coefficient is tending to infinity after 3 iterations".
So increasing the number of iteration from 20 to 50 does not help since it stopped at the 3rd iteration.  
Any further suggestion to solve the problem is highly solicited.

Thank you.



On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver <[hidden email]> wrote:


Did you try increasing the number of iterations on the /CRITERIA sub-command?
E.g.,

COXREG faketime
  /STATUS=outcome(1)
  /STRATA=Stratum
  /METHOD=ENTER X
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).




E. Bernardo wrote

> Thank you for the link. I think my SPSS syntax now is correct.COXREG
> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
> However there is warning as part of the outputs. This warning is:"Since
> coefficients did not converge, no further models will be fitted."
> And the odds ratio is too large: Exp(B) = 74.769
> Is the odds ratio wrong?
> SPSS outputs are pasted below.
> Eins
>
>
> | Warnings |  |  |  |  |  |  |  |  |  |
> | Since coefficients did not converge, no further models will be fitted. |
> |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Case Processing Summary |  |  |  |  |  |  |
> |   | N | Percent |  |  |  |  |  |  |
> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
> | Censored | 94 | 66.7% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  |  |
> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  |  |
> |  |  |  |
> | Total | 0 | 0.0% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
...
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo
Hi Rich and others,

It is a case-control study using 1 case and 2 controls.  There are 47 cases and 94 controls.
The 2 x2 Data subjected to Conditional Logistic Regression is shown in the table below.
Results: OR = 74.769 and 95% CI of OR: (1.949 - 2868.900).
Any comment on the outputs?


Deseased * DV Crosstabulation
Count 
 
DV
Total
Controls
Cases
Disease
Diagnosed
Negative
79
25
104
Positive
15
22
37
Total
94
47
141


On Wednesday, March 23, 2016 12:16 PM, Rich Ulrich <[hidden email]> wrote:


Your original data showed an OR of 19, with 300 cases -
The 2x2 table had cells of {50,50; 190;10}.  Is 78 unreasonable?

This run shows N= 141.  Rather a loss.  What does the 2x2 table look like?
(And, What happened to the other half of the data?)

Getting an infinite coefficient is a symptom of having perfect separation.
I never used CoxReg for case control, so I can't vouch for your syntax -
in case "perfect separation" is not the answer.

--
Rich Ulrich



Date: Wed, 23 Mar 2016 01:25:39 +0000
From: [hidden email]
Subject: Re: Mc Nemar Test for 1:2 Case-Control ?
To: [hidden email]

Thank you Bruce for your comments.

The warning was "
Since coefficients did not converge, no further models will be fitted."
The Iteration History states that "At least one coefficient is tending to infinity after 3 iterations".
So increasing the number of iteration from 20 to 50 does not help since it stopped at the 3rd iteration.  
Any further suggestion to solve the problem is highly solicited.

Thank you.



On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver <[hidden email]> wrote:


Did you try increasing the number of iterations on the /CRITERIA sub-command?
E.g.,

COXREG faketime
  /STATUS=outcome(1)
  /STRATA=Stratum
  /METHOD=ENTER X
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).




E. Bernardo wrote

> Thank you for the link. I think my SPSS syntax now is correct.COXREG
> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
> However there is warning as part of the outputs. This warning is:"Since
> coefficients did not converge, no further models will be fitted."
> And the odds ratio is too large: Exp(B) = 74.769
> Is the odds ratio wrong?
> SPSS outputs are pasted below.
> Eins
>
>
> | Warnings |  |  |  |  |  |  |  |  |  |
> | Since coefficients did not converge, no further models will be fitted. |
> |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Case Processing Summary |  |  |  |  |  |  |
> |   | N | Percent |  |  |  |  |  |  |
> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
> | Censored | 94 | 66.7% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  |  |
> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  |  |
> |  |  |  |
> | Total | 0 | 0.0% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
...
===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD


===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Bruce Weaver
Administrator
In reply to this post by E. Bernardo
Okay!  Have you tried GENLIN using GEE as an alternative to conditional logistic regression?  Several years ago, I estimated some conditional logistic regression models using Stata, then some time later, analyzed the same data using GENLIN with GEE.  The results were very similar.  You can see the comparisons in this old thread from comp.soft-sys.stat.spss:

https://groups.google.com/forum/#!topic/comp.soft-sys.stat.spss/zkxR016mZxM

If I understand your COXREG command, I think the GENLIN syntax would be something like this:

* Generalized Estimating Equations.
GENLIN outcome (REFERENCE=FIRST) WITH X
 /MODEL X INTERCEPT=YES
  DISTRIBUTION=BINOMIAL LINK=LOGIT
 /REPEATED SUBJECT=Stratum SORT=YES
  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES
  COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
 /MISSING CLASSMISSING=EXCLUDE
 /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

This assumes X is continuous.  If it is categorical, change WITH to BY on the first line.

This model may not converge either, which would suggest there's some problem with your data.  But I think it's worth a try.

HTH.


E. Bernardo wrote
Thank you Bruce for your comments.
The warning was "Since coefficients did not converge, no further models will be fitted."The Iteration History states that "At least one coefficient is tending to infinity after 3 iterations".So increasing the number of iteration from 20 to 50 does not help since it stopped at the 3rd iteration.  Any further suggestion to solve the problem is highly solicited.

Thank you.


    On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver <[hidden email]> wrote:
 

 Did you try increasing the number of iterations on the /CRITERIA sub-command?
E.g.,

COXREG faketime
  /STATUS=outcome(1)
  /STRATA=Stratum
  /METHOD=ENTER X
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).




E. Bernardo wrote
> Thank you for the link. I think my SPSS syntax now is correct.COXREG
> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
> However there is warning as part of the outputs. This warning is:"Since
> coefficients did not converge, no further models will be fitted."
> And the odds ratio is too large: Exp(B) = 74.769
> Is the odds ratio wrong?
> SPSS outputs are pasted below.
> Eins
>
>
> | Warnings |  |  |  |  |  |  |  |  |  |
> | Since coefficients did not converge, no further models will be fitted. |
> |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Case Processing Summary |  |  |  |  |  |  |
> |   | N | Percent |  |  |  |  |  |  |
> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
> | Censored | 94 | 66.7% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  |  |
> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  |  |
> |  |  |  |
> | Total | 0 | 0.0% |  |  |  |  |  |  |
> | Total | 141 | 100.0% |  |  |  |  |  |  |
> | a. Dependent Variable: faketime |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Stratum Statusa |  |  |  |  |  |  |
> | Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
> |          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> |         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
> | Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
> | a. The strata variable is : Stratum |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
> | -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
> | 103.270 |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Iteration Historyb |  |  |  |  |  |  |  |
> |   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
> | X |  |  |  |  |  |  |  |
> | 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
> | 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
> | 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
> | a. Beginning Block Number 0, initial Log Likelihood function: -2 Log
> likelihood: 103.270 |  |  |  |  |  |  |  |
> | b. At least one coefficient is tending to infinity after 3 iterations |
> |  |  |  |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Omnibus Tests of Model Coefficientsa |
> | -2 Log Likelihood | Overall (score) | Change From Previous Step | Change
> From Previous Block |
> | Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df | Sig.
> |
> | 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
> | a. Beginning Block Number 1. Method = Enter |
> |  |  |  |  |  |  |  |  |  |  |
> | Variables in the Equation |  |  |  |
> |   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
> | X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
> |  |  |  |  |  |  |  |  |  |  |
> | Covariate Means |  |  |  |  |  |  |  |  |
> |   | Mean |  |  |  |  |  |  |  |  |
> | X | .262 |  |  |  |  |  |  |  |  |
>

>
>    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero <

> mgarciagranero@

> > wrote:

>
>  Hi

>  I don't think your syntax is correct. You have a create a false " time
> variable" first , let's call it pseudotime, with values EQ 2 for controls
> and EQ 1 for cases. This variable acts as time on the COXREG command.
> Status is defined by CaseControl, the covariable/factor is HealthStatus,
> and Matchgroup acts as strata variable.

>  Did you try the Mantel-Haenszel statistic approach?

>  Sorry I can't be more detailed/helpful, but I'm at an airport right now,
> with just my laptop (away from the desktop office computer with all my old
> syntax collection.

>  Regards,
>  Marta Garcia-Granero

>  El 12/03/2016 a las 4:36, E. Bernardo escribió:

>  Thank you for your comments, Marta and Rich.
>  Yes, raw data are available.  The summary data are just my example to
> illustrate my data. Actually, I tried to use the C regression (as trick to
> conduct Conditional regression in SPSS).  However, the SPSS reports only
> the -2LL. I dont know if I did the correct trick.
>  Marta, following the variable names you provided in the previous email,
> here is my syntax:
>  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus  
> /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>  What is wrong with my syntax?
>  Thank you.

>      On Friday, March 11, 2016 2:27 AM, Rich Ulrich <

> rich-ulrich@

> > wrote:


>    #yiv5634543243 --.yiv5634543243hmmessage
> P{margin:0px;padding:0px;}#yiv5634543243
> body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243 
> As Marta G-G says, you are very limited if you don't have the raw data.
>  And, abstractly, I'm not grasping how the McNemar Test would fit, even
> for a
>  simple pair.

>  Given the summary numbers, you have a simple contingency table.
>  If those are the numbers, there is not much doubt about a difference.

>  However, if the "matching" was important, then taking it into account
>  would reduce the size of the apparent effect.  That's simple logic. ("Why
> do we
>  want to match?  - Because those variables might account for the
> outcome.")

>  Often, trying to match is useful for collecting/selecting Controls to
> use.  However,
>  I have long been hostile to analyzing such data as "matched", given (a)
> the
>  imprecision of much of such matching ("age within 4 years"); (b) the loss
> of
>  d.f.  in the analysis; and, (c) the weakness of treating the matching
> covariates
>  essentially as categories instead of as continuous measures.  - The
> alternative
>  of using the matching variables as covariates (in a logistic regression,
> here)
>  is almost bound to be more powerful and more robust.  - That, in turn,
> requires
>  that the data be entered with a line for each subject, with the Group,
> Status,
>  and personal covariates.

>  --
>  Rich Ulrich



>    Date: Thu, 10 Mar 2016 05:46:45 +0000
>  From:

> einsbernardo@.com

>  Subject: Mc Nemar Test for 1:2 Case-Control ?
>  To:

> SPSSX-L@.UGA


>    Dear Members,
>  Consider the 1:2 matched study where each case is matched with 2
> controls.  Health status (classified as "+" or "-" ) of all cases and
> controls were recorded. Summary of the  gathered data looks like as
> follows:
>  Group     HealthStatus   Count Case              +                50
> Case              -                 50 Control          +                
> 10 Control           -                 190
>  Can we use McNemar Test to test if the proportion of cases on the "+"
> HealthStatus is greater than the controls? Please suggest an appropriate
> test if McNemar test is not appropriate.
>  Thank you. 
>      ===================== To manage your subscription to SPSSX-L, send a
> message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the command. To leave the
> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
> subscriptions, send the command INFO REFCARD 

>     

>  =====================To manage your subscription to SPSSX-L, send a
> message

> toLISTSERV@.UGA

>  (not to SPSSX-L), with no body text except thecommand. To leave the list,
> send the commandSIGNOFF SPSSX-LFor a list of commands to manage
> subscriptions, send the commandINFO REFCARD
>
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
--
Bruce Weaver
[hidden email]
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

NOTE: My Hotmail account is not monitored regularly.
To send me an e-mail, please use the address shown above.

--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731793.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
--
Bruce Weaver
bweaver@lakeheadu.ca
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

PLEASE NOTE THE FOLLOWING: 
1. My Hotmail account is not monitored regularly. To send me an e-mail, please use the address shown above.
2. The SPSSX Discussion forum on Nabble is no longer linked to the SPSSX-L listserv administered by UGA (https://listserv.uga.edu/).
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo-2
Dear Bruce, 

I modified the first line of your syntax by changing WITH to BY because X is categorical with two values (0 and 1).  I also put (order=descending) as shown below.

* Generalized Estimating Equations.
GENLIN outcome (REFERENCE=FIRST) BY X (Order = descending)
/MODEL X INTERCEPT=YES
  DISTRIBUTION=BINOMIAL LINK=LOGIT
/REPEATED SUBJECT=Stratum SORT=YES
  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES
  COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
/MISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.


The GEE outputs are as follows:

Parameter B Std. Error 95% Wald Confidence Interval Hypothesis Test
Lower Upper Wald Chi-Square df Sig.
(Intercept) -0.000046015394 0.000005938070 -0.000057653798 -0.000034376990 60.050 1 .000
[X=1.00] 0.000066959532 0.000013788672 0.000039934232 0.000093984832 23.582 1 .000
[X=.00] 0a            
(Scale) 1            

How will be compute the Odds Ratio? Is it OR = Exp(B) = exp(.000066959532) = 1.000067?
The B coefficients look weird!  Any comment about the outputs?

Thank you.
Eins


On Thursday, March 24, 2016 12:24 AM, Bruce Weaver <[hidden email]> wrote:


Okay!  Have you tried GENLIN using GEE as an alternative to conditional
logistic regression?  Several years ago, I estimated some conditional
logistic regression models using Stata, then some time later, analyzed the
same data using GENLIN with GEE.  The results were very similar.  You can
see the comparisons in this old thread from comp.soft-sys.stat.spss:

https://groups.google.com/forum/#!topic/comp.soft-sys.stat.spss/zkxR016mZxM

If I understand your COXREG command, I think the GENLIN syntax would be
something like this:

* Generalized Estimating Equations.
GENLIN outcome (REFERENCE=FIRST) WITH X
/MODEL X INTERCEPT=YES
  DISTRIBUTION=BINOMIAL LINK=LOGIT
/REPEATED SUBJECT=Stratum SORT=YES
  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES
  COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
/MISSING CLASSMISSING=EXCLUDE
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

This assumes X is continuous.  If it is categorical, change WITH to BY on
the first line.

This model may not converge either, which would suggest there's some problem
with your data.  But I think it's worth a try.

HTH.



E. Bernardo wrote

> Thank you Bruce for your comments.
> The warning was "Since coefficients did not converge, no further models
> will be fitted."The Iteration History states that "At least one
> coefficient is tending to infinity after 3 iterations".So increasing the
> number of iteration from 20 to 50 does not help since it stopped at the
> 3rd iteration.  Any further suggestion to solve the problem is highly
> solicited.
>
> Thank you.
>
>
>    On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver &lt;

> bruce.weaver@

> &gt; wrote:

>
>  Did you try increasing the number of iterations on the /CRITERIA
> sub-command?
> E.g.,
>
> COXREG faketime
>   /STATUS=outcome(1)
>   /STRATA=Stratum
>   /METHOD=ENTER X
>   /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).
>
>
>
>
> E. Bernardo wrote
>> Thank you for the link. I think my SPSS syntax now is correct.COXREG
>> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
>> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>> However there is warning as part of the outputs. This warning is:"Since
>> coefficients did not converge, no further models will be fitted."
>> And the odds ratio is too large: Exp(B) = 74.769
>> Is the odds ratio wrong?
>> SPSS outputs are pasted below.
>> Eins
>>
>>
>> | Warnings |  |  |  |  |  |  |  |  |  |
>> | Since coefficients did not converge, no further models will be fitted.
>> |
>> |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Case Processing Summary |  |  |  |  |  |  |
>> |   | N | Percent |  |  |  |  |  |  |
>> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
>> | Censored | 94 | 66.7% |  |  |  |  |  |  |
>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  | 
>> |
>> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
>> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  | 
>> |
>> |  |  |  |
>> | Total | 0 | 0.0% |  |  |  |  |  |  |
>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>> | a. Dependent Variable: faketime |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Stratum Statusa |  |  |  |  |  |  |
>> | Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
>> |          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> | Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
>> | a. The strata variable is : Stratum |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
>> | -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
>> | 103.270 |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Iteration Historyb |  |  |  |  |  |  |  |
>> |   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
>> | X |  |  |  |  |  |  |  |
>> | 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
>> | 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
>> | 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
>> | a. Beginning Block Number 0, initial Log Likelihood function: -2 Log
>> likelihood: 103.270 |  |  |  |  |  |  |  |
>> | b. At least one coefficient is tending to infinity after 3 iterations |
>> |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Omnibus Tests of Model Coefficientsa |
>> | -2 Log Likelihood | Overall (score) | Change From Previous Step |
>> Change
>> From Previous Block |
>> | Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df |
>> Sig.
>> |
>> | 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
>> | a. Beginning Block Number 1. Method = Enter |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Variables in the Equation |  |  |  |
>> |   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
>> | X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Covariate Means |  |  |  |  |  |  |  |  |
>> |   | Mean |  |  |  |  |  |  |  |  |
>> | X | .262 |  |  |  |  |  |  |  |  |
>>
>> 
>>
>>    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero &lt;
>
>> mgarciagranero@
>
>> &gt; wrote:
>> 
>>
>>  Hi
>> 
>>  I don't think your syntax is correct. You have a create a false " time
>> variable" first , let's call it pseudotime, with values EQ 2 for controls
>> and EQ 1 for cases. This variable acts as time on the COXREG command.
>> Status is defined by CaseControl, the covariable/factor is HealthStatus,
>> and Matchgroup acts as strata variable.
>> 
>>  Did you try the Mantel-Haenszel statistic approach?
>> 
>>  Sorry I can't be more detailed/helpful, but I'm at an airport right now,
>> with just my laptop (away from the desktop office computer with all my
>> old
>> syntax collection.
>> 
>>  Regards,
>>  Marta Garcia-Granero
>> 
>>  El 12/03/2016 a las 4:36, E. Bernardo escribió:
>> 
>>  Thank you for your comments, Marta and Rich.
>>  Yes, raw data are available.  The summary data are just my example to
>> illustrate my data. Actually, I tried to use the C regression (as trick
>> to
>> conduct Conditional regression in SPSS).  However, the SPSS reports only
>> the -2LL. I dont know if I did the correct trick.
>>  Marta, following the variable names you provided in the previous email,
>> here is my syntax:
>>  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus  
>> /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>>  What is wrong with my syntax?
>>  Thank you.
>> 
>>      On Friday, March 11, 2016 2:27 AM, Rich Ulrich &lt;
>
>> rich-ulrich@
>
>> &gt; wrote:
>> 
>> 
>>    #yiv5634543243 --.yiv5634543243hmmessage
>> P{margin:0px;padding:0px;}#yiv5634543243
>> body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243 
>> As Marta G-G says, you are very limited if you don't have the raw data.
>>  And, abstractly, I'm not grasping how the McNemar Test would fit, even
>> for a
>>  simple pair.
>> 
>>  Given the summary numbers, you have a simple contingency table.
>>  If those are the numbers, there is not much doubt about a difference.
>> 
>>  However, if the "matching" was important, then taking it into account
>>  would reduce the size of the apparent effect.  That's simple logic.
("Why
>> do we
>>  want to match?  - Because those variables might account for the
>> outcome.")
>> 
>>  Often, trying to match is useful for collecting/selecting Controls to
>> use.  However,
>>  I have long been hostile to analyzing such data as "matched", given (a)
>> the
>>  imprecision of much of such matching ("age within 4 years"); (b) the
loss

>> of
>>  d.f.  in the analysis; and, (c) the weakness of treating the matching
>> covariates
>>  essentially as categories instead of as continuous measures.  - The
>> alternative
>>  of using the matching variables as covariates (in a logistic regression,
>> here)
>>  is almost bound to be more powerful and more robust.  - That, in turn,
>> requires
>>  that the data be entered with a line for each subject, with the Group,
>> Status,
>>  and personal covariates.
>> 
>>  --
>>  Rich Ulrich
>> 
>> 
>> 
>>    Date: Thu, 10 Mar 2016 05:46:45 +0000
>>  From:
>
>> [hidden email]
>
>>  Subject: Mc Nemar Test for 1:2 Case-Control ?
>>  To:
>
>> [hidden email]
>
>> 
>>    Dear Members,
>>  Consider the 1:2 matched study where each case is matched with 2
>> controls.  Health status (classified as "+" or "-" ) of all cases and
>> controls were recorded. Summary of the  gathered data looks like as
>> follows:
>>  Group     HealthStatus   Count Case              +                50
>> Case              -                 50 Control          +                
>> 10 Control           -                 190
>>  Can we use McNemar Test to test if the proportion of cases on the "+"
>> HealthStatus is greater than the controls? Please suggest an appropriate
>> test if McNemar test is not appropriate.
>>  Thank you. 
>>      ===================== To manage your subscription to SPSSX-L, send a
>> message to
>
>> [hidden email]
>
>>  (not to SPSSX-L), with no body text except the command. To leave the
>> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
>> subscriptions, send the command INFO REFCARD 
>> 
>>     
>> 
>>  =====================To manage your subscription to SPSSX-L, send a
>> message
>
>> [hidden email]
>
>>  (not to SPSSX-L), with no body text except thecommand. To leave the
list,

>> send the commandSIGNOFF SPSSX-LFor a list of commands to manage
>> subscriptions, send the commandINFO REFCARD
>>
>>
>> =====================
>> To manage your subscription to SPSSX-L, send a message to
>
>> [hidden email]
>
>>  (not to SPSSX-L), with no body text except the
>> command. To leave the list, send the command
>> SIGNOFF SPSSX-L
>> For a list of commands to manage subscriptions, send the command
>> INFO REFCARD
>
>
>
>
>
> -----
> --
> Bruce Weaver

> bweaver@

> http://sites.google.com/a/lakeheadu.ca/bweaver/
>
> "When all else fails, RTFM."
>
> NOTE: My Hotmail account is not monitored regularly.
> To send me an e-mail, please use the address shown above.
>
> --
> View this message in context:
> http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731793.html
> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> [hidden email]

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD
>
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> [hidden email]

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
--
Bruce Weaver
[hidden email]
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

NOTE: My Hotmail account is not monitored regularly.
To send me an e-mail, please use the address shown above.

--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731801.html

Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Bruce Weaver
Administrator
Hi Eins.  Yes, OR = Exp(B).  If you add (EXPONENTIATED) after SOLUTION on the /PRINT sub-command, you'll see Exp(B) displayed in the table of coefficients (with a confidence interval).  

An OR = 1.000067 normally would be taken to indicate no important effect.  Despite being such a small effect size, the Wald test value is huge (Chi-square = 23.582, df = 1, p < .0001).  

What is the context?  (If you gave it earlier in the thread, I missed it.)  What is the outcome variable, and what is the dichotomous explanatory variable?  

Cheers,
Bruce


E. Bernardo-2 wrote
Dear Bruce, 
I modified the first line of your syntax by changing WITH to BY because X is categorical with two values (0 and 1).  I also put (order=descending) as shown below.
* Generalized Estimating Equations.
GENLIN outcome (REFERENCE=FIRST) BY X (Order = descending)
/MODEL X INTERCEPT=YES  DISTRIBUTION=BINOMIAL LINK=LOGIT/REPEATED SUBJECT=Stratum SORT=YES  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES  COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1/MISSING CLASSMISSING=EXCLUDE/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION./PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

 The GEE outputs are as follows:

| Parameter | B | Std. Error | 95% Wald Confidence Interval | Hypothesis Test |
| Lower | Upper | Wald Chi-Square | df | Sig. |
| (Intercept) | -0.000046015394 | 0.000005938070 | -0.000057653798 | -0.000034376990 | 60.050 | 1 | .000 |
| [X=1.00] | 0.000066959532 | 0.000013788672 | 0.000039934232 | 0.000093984832 | 23.582 | 1 | .000 |
| [X=.00] | 0a |   |   |   |   |   |   |
| (Scale) | 1 |   |   |   |   |   |   |


How will be compute the Odds Ratio? Is it OR = Exp(B) = exp(.000066959532) = 1.000067?The B coefficients look weird!  Any comment about the outputs?
Thank you.Eins

    On Thursday, March 24, 2016 12:24 AM, Bruce Weaver <[hidden email]> wrote:
 

 Okay!  Have you tried GENLIN using GEE as an alternative to conditional
logistic regression?  Several years ago, I estimated some conditional
logistic regression models using Stata, then some time later, analyzed the
same data using GENLIN with GEE.  The results were very similar.  You can
see the comparisons in this old thread from comp.soft-sys.stat.spss:

https://groups.google.com/forum/#!topic/comp.soft-sys.stat.spss/zkxR016mZxM

If I understand your COXREG command, I think the GENLIN syntax would be
something like this:

* Generalized Estimating Equations.
GENLIN outcome (REFERENCE=FIRST) WITH X
 /MODEL X INTERCEPT=YES
  DISTRIBUTION=BINOMIAL LINK=LOGIT
 /REPEATED SUBJECT=Stratum SORT=YES
  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES
  COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
 /MISSING CLASSMISSING=EXCLUDE
 /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

This assumes X is continuous.  If it is categorical, change WITH to BY on
the first line.

This model may not converge either, which would suggest there's some problem
with your data.  But I think it's worth a try.

HTH.



E. Bernardo wrote
> Thank you Bruce for your comments.
> The warning was "Since coefficients did not converge, no further models
> will be fitted."The Iteration History states that "At least one
> coefficient is tending to infinity after 3 iterations".So increasing the
> number of iteration from 20 to 50 does not help since it stopped at the
> 3rd iteration.  Any further suggestion to solve the problem is highly
> solicited.
>
> Thank you.
>
>
>    On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver <

> bruce.weaver@

> > wrote:

>
>  Did you try increasing the number of iterations on the /CRITERIA
> sub-command?
> E.g.,
>
> COXREG faketime
>   /STATUS=outcome(1)
>   /STRATA=Stratum
>   /METHOD=ENTER X
>   /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).
>
>
>
>
> E. Bernardo wrote
>> Thank you for the link. I think my SPSS syntax now is correct.COXREG
>> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
>> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>> However there is warning as part of the outputs. This warning is:"Since
>> coefficients did not converge, no further models will be fitted."
>> And the odds ratio is too large: Exp(B) = 74.769
>> Is the odds ratio wrong?
>> SPSS outputs are pasted below.
>> Eins
>>
>>
>> | Warnings |  |  |  |  |  |  |  |  |  |
>> | Since coefficients did not converge, no further models will be fitted.
>> |
>> |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Case Processing Summary |  |  |  |  |  |  |
>> |   | N | Percent |  |  |  |  |  |  |
>> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
>> | Censored | 94 | 66.7% |  |  |  |  |  |  |
>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  | 
>> |
>> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
>> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  | 
>> |
>> |  |  |  |
>> | Total | 0 | 0.0% |  |  |  |  |  |  |
>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>> | a. Dependent Variable: faketime |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Stratum Statusa |  |  |  |  |  |  |
>> | Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
>> |          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> |         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>> | Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
>> | a. The strata variable is : Stratum |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
>> | -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
>> | 103.270 |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Iteration Historyb |  |  |  |  |  |  |  |
>> |   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
>> | X |  |  |  |  |  |  |  |
>> | 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
>> | 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
>> | 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
>> | a. Beginning Block Number 0, initial Log Likelihood function: -2 Log
>> likelihood: 103.270 |  |  |  |  |  |  |  |
>> | b. At least one coefficient is tending to infinity after 3 iterations |
>> |  |  |  |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Omnibus Tests of Model Coefficientsa |
>> | -2 Log Likelihood | Overall (score) | Change From Previous Step |
>> Change
>> From Previous Block |
>> | Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df |
>> Sig.
>> |
>> | 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
>> | a. Beginning Block Number 1. Method = Enter |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Variables in the Equation |  |  |  |
>> |   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
>> | X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
>> |  |  |  |  |  |  |  |  |  |  |
>> | Covariate Means |  |  |  |  |  |  |  |  |
>> |   | Mean |  |  |  |  |  |  |  |  |
>> | X | .262 |  |  |  |  |  |  |  |  |
>>
>> 
>>
>>    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero <
>
>> mgarciagranero@
>
>> > wrote:
>> 
>>
>>  Hi
>> 
>>  I don't think your syntax is correct. You have a create a false " time
>> variable" first , let's call it pseudotime, with values EQ 2 for controls
>> and EQ 1 for cases. This variable acts as time on the COXREG command.
>> Status is defined by CaseControl, the covariable/factor is HealthStatus,
>> and Matchgroup acts as strata variable.
>> 
>>  Did you try the Mantel-Haenszel statistic approach?
>> 
>>  Sorry I can't be more detailed/helpful, but I'm at an airport right now,
>> with just my laptop (away from the desktop office computer with all my
>> old
>> syntax collection.
>> 
>>  Regards,
>>  Marta Garcia-Granero
>> 
>>  El 12/03/2016 a las 4:36, E. Bernardo escribió:
>> 
>>  Thank you for your comments, Marta and Rich.
>>  Yes, raw data are available.  The summary data are just my example to
>> illustrate my data. Actually, I tried to use the C regression (as trick
>> to
>> conduct Conditional regression in SPSS).  However, the SPSS reports only
>> the -2LL. I dont know if I did the correct trick.
>>  Marta, following the variable names you provided in the previous email,
>> here is my syntax:
>>  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus  
>> /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>>  What is wrong with my syntax?
>>  Thank you.
>> 
>>      On Friday, March 11, 2016 2:27 AM, Rich Ulrich <
>
>> rich-ulrich@
>
>> > wrote:
>> 
>> 
>>    #yiv5634543243 --.yiv5634543243hmmessage
>> P{margin:0px;padding:0px;}#yiv5634543243
>> body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243 
>> As Marta G-G says, you are very limited if you don't have the raw data.
>>  And, abstractly, I'm not grasping how the McNemar Test would fit, even
>> for a
>>  simple pair.
>> 
>>  Given the summary numbers, you have a simple contingency table.
>>  If those are the numbers, there is not much doubt about a difference.
>> 
>>  However, if the "matching" was important, then taking it into account
>>  would reduce the size of the apparent effect.  That's simple logic.
("Why
>> do we
>>  want to match?  - Because those variables might account for the
>> outcome.")
>> 
>>  Often, trying to match is useful for collecting/selecting Controls to
>> use.  However,
>>  I have long been hostile to analyzing such data as "matched", given (a)
>> the
>>  imprecision of much of such matching ("age within 4 years"); (b) the
loss
>> of
>>  d.f.  in the analysis; and, (c) the weakness of treating the matching
>> covariates
>>  essentially as categories instead of as continuous measures.  - The
>> alternative
>>  of using the matching variables as covariates (in a logistic regression,
>> here)
>>  is almost bound to be more powerful and more robust.  - That, in turn,
>> requires
>>  that the data be entered with a line for each subject, with the Group,
>> Status,
>>  and personal covariates.
>> 
>>  --
>>  Rich Ulrich
>> 
>> 
>> 
>>    Date: Thu, 10 Mar 2016 05:46:45 +0000
>>  From:
>
>> einsbernardo@.com
>
>>  Subject: Mc Nemar Test for 1:2 Case-Control ?
>>  To:
>
>> SPSSX-L@.UGA
>
>> 
>>    Dear Members,
>>  Consider the 1:2 matched study where each case is matched with 2
>> controls.  Health status (classified as "+" or "-" ) of all cases and
>> controls were recorded. Summary of the  gathered data looks like as
>> follows:
>>  Group     HealthStatus   Count Case              +                50
>> Case              -                 50 Control          +                
>> 10 Control           -                 190
>>  Can we use McNemar Test to test if the proportion of cases on the "+"
>> HealthStatus is greater than the controls? Please suggest an appropriate
>> test if McNemar test is not appropriate.
>>  Thank you. 
>>      ===================== To manage your subscription to SPSSX-L, send a
>> message to
>
>> LISTSERV@.UGA
>
>>  (not to SPSSX-L), with no body text except the command. To leave the
>> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
>> subscriptions, send the command INFO REFCARD 
>> 
>>     
>> 
>>  =====================To manage your subscription to SPSSX-L, send a
>> message
>
>> toLISTSERV@.UGA
>
>>  (not to SPSSX-L), with no body text except thecommand. To leave the
list,
>> send the commandSIGNOFF SPSSX-LFor a list of commands to manage
>> subscriptions, send the commandINFO REFCARD
>>
>>
>> =====================
>> To manage your subscription to SPSSX-L, send a message to
>
>> LISTSERV@.UGA
>
>>  (not to SPSSX-L), with no body text except the
>> command. To leave the list, send the command
>> SIGNOFF SPSSX-L
>> For a list of commands to manage subscriptions, send the command
>> INFO REFCARD
>
>
>
>
>
> -----
> --
> Bruce Weaver

> bweaver@

> http://sites.google.com/a/lakeheadu.ca/bweaver/
>
> "When all else fails, RTFM."
>
> NOTE: My Hotmail account is not monitored regularly.
> To send me an e-mail, please use the address shown above.
>
> --
> View this message in context:
> http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731793.html
> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD
>
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
--
Bruce Weaver
[hidden email]
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

NOTE: My Hotmail account is not monitored regularly.
To send me an e-mail, please use the address shown above.

--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731801.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
--
Bruce Weaver
bweaver@lakeheadu.ca
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

PLEASE NOTE THE FOLLOWING: 
1. My Hotmail account is not monitored regularly. To send me an e-mail, please use the address shown above.
2. The SPSSX Discussion forum on Nabble is no longer linked to the SPSSX-L listserv administered by UGA (https://listserv.uga.edu/).
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

E. Bernardo-2
Outcome = 1, 0 (1 case, 2 control)
IV = 1, 0 (pain, no pain)


On Thursday, March 31, 2016 2:40 AM, Bruce Weaver <[hidden email]> wrote:


Hi Eins.  Yes, OR = Exp(B).  If you add (EXPONENTIATED) after SOLUTION on the
/PRINT sub-command, you'll see Exp(B) displayed in the table of coefficients
(with a confidence interval). 

An OR = 1.000067 normally would be taken to indicate no important effect.
Despite being such a small effect size, the Wald test value is huge
(Chi-square = 23.582, df = 1, p < .0001). 

What is the context?  (If you gave it earlier in the thread, I missed it.)
What is the outcome variable, and what is the dichotomous explanatory
variable? 

Cheers,
Bruce



E. Bernardo-2 wrote

> Dear Bruce, 
> I modified the first line of your syntax by changing WITH to BY because X
> is categorical with two values (0 and 1).  I also put (order=descending)
> as shown below.
> * Generalized Estimating Equations.
> GENLIN outcome (REFERENCE=FIRST) BY X (Order = descending)
> /MODEL X INTERCEPT=YES  DISTRIBUTION=BINOMIAL LINK=LOGIT/REPEATED
> SUBJECT=Stratum SORT=YES  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES 
> COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE)
> UPDATECORR=1/MISSING CLASSMISSING=EXCLUDE/PRINT CPS DESCRIPTIVES MODELINFO
> FIT SUMMARY SOLUTION./PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY
> SOLUTION.
>
>  The GEE outputs are as follows:
>
> | Parameter | B | Std. Error | 95% Wald Confidence Interval | Hypothesis
> Test |
> | Lower | Upper | Wald Chi-Square | df | Sig. |
> | (Intercept) | -0.000046015394 | 0.000005938070 | -0.000057653798 |
> -0.000034376990 | 60.050 | 1 | .000 |
> | [X=1.00] | 0.000066959532 | 0.000013788672 | 0.000039934232 |
> 0.000093984832 | 23.582 | 1 | .000 |
> | [X=.00] | 0a |   |   |   |   |   |   |
> | (Scale) | 1 |   |   |   |   |   |   |
>
>
> How will be compute the Odds Ratio? Is it OR = Exp(B) = exp(.000066959532)
> = 1.000067?The B coefficients look weird!  Any comment about the outputs?
> Thank you.Eins
>
>    On Thursday, March 24, 2016 12:24 AM, Bruce Weaver &lt;

> bruce.weaver@

> &gt; wrote:

>
>  Okay!  Have you tried GENLIN using GEE as an alternative to conditional
> logistic regression?  Several years ago, I estimated some conditional
> logistic regression models using Stata, then some time later, analyzed the
> same data using GENLIN with GEE.  The results were very similar.  You can
> see the comparisons in this old thread from comp.soft-sys.stat.spss:
>
> https://groups.google.com/forum/#!topic/comp.soft-sys.stat.spss/zkxR016mZxM
>
> If I understand your COXREG command, I think the GENLIN syntax would be
> something like this:
>
> * Generalized Estimating Equations.
> GENLIN outcome (REFERENCE=FIRST) WITH X
>  /MODEL X INTERCEPT=YES
>   DISTRIBUTION=BINOMIAL LINK=LOGIT
>  /REPEATED SUBJECT=Stratum SORT=YES
>   CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES
>   COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
>  /MISSING CLASSMISSING=EXCLUDE
>  /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.
>
> This assumes X is continuous.  If it is categorical, change WITH to BY on
> the first line.
>
> This model may not converge either, which would suggest there's some
> problem
> with your data.  But I think it's worth a try.
>
> HTH.
>
>
>
> E. Bernardo wrote
>> Thank you Bruce for your comments.
>> The warning was "Since coefficients did not converge, no further models
>> will be fitted."The Iteration History states that "At least one
>> coefficient is tending to infinity after 3 iterations".So increasing the
>> number of iteration from 20 to 50 does not help since it stopped at the
>> 3rd iteration.  Any further suggestion to solve the problem is highly
>> solicited.
>>
>> Thank you.
>>
>>
>>    On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver &lt;
>
>> bruce.weaver@
>
>> &gt; wrote:
>> 
>>
>>  Did you try increasing the number of iterations on the /CRITERIA
>> sub-command?
>> E.g.,
>>
>> COXREG faketime
>>   /STATUS=outcome(1)
>>   /STRATA=Stratum
>>   /METHOD=ENTER X
>>   /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).
>>
>>
>>
>>
>> E. Bernardo wrote
>>> Thank you for the link. I think my SPSS syntax now is correct.COXREG
>>> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
>>> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>>> However there is warning as part of the outputs. This warning is:"Since
>>> coefficients did not converge, no further models will be fitted."
>>> And the odds ratio is too large: Exp(B) = 74.769
>>> Is the odds ratio wrong?
>>> SPSS outputs are pasted below.
>>> Eins
>>>
>>>
>>> | Warnings |  |  |  |  |  |  |  |  |  |
>>> | Since coefficients did not converge, no further models will be fitted.
>>> |
>>> |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Case Processing Summary |  |  |  |  |  |  |
>>> |   | N | Percent |  |  |  |  |  |  |
>>> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
>>> | Censored | 94 | 66.7% |  |  |  |  |  |  |
>>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>>> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  | 
>>> |
>>> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
>>> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  | 
>>> |
>>> |  |  |  |
>>> | Total | 0 | 0.0% |  |  |  |  |  |  |
>>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>>> | a. Dependent Variable: faketime |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Stratum Statusa |  |  |  |  |  |  |
>>> | Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
>>> |          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> | Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
>>> | a. The strata variable is : Stratum |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
>>> | -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
>>> | 103.270 |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Iteration Historyb |  |  |  |  |  |  |  |
>>> |   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
>>> | X |  |  |  |  |  |  |  |
>>> | 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
>>> | 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
>>> | 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
>>> | a. Beginning Block Number 0, initial Log Likelihood function: -2 Log
>>> likelihood: 103.270 |  |  |  |  |  |  |  |
>>> | b. At least one coefficient is tending to infinity after 3 iterations
>>> |
>>> |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Omnibus Tests of Model Coefficientsa |
>>> | -2 Log Likelihood | Overall (score) | Change From Previous Step |
>>> Change
>>> From Previous Block |
>>> | Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df |
>>> Sig.
>>> |
>>> | 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
>>> | a. Beginning Block Number 1. Method = Enter |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Variables in the Equation |  |  |  |
>>> |   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
>>> | X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Covariate Means |  |  |  |  |  |  |  |  |
>>> |   | Mean |  |  |  |  |  |  |  |  |
>>> | X | .262 |  |  |  |  |  |  |  |  |
>>>
>>> 
>>>
>>>    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero &lt;
>>
>>> mgarciagranero@
>>
>>> &gt; wrote:
>>> 
>>>
>>>  Hi
>>> 
>>>  I don't think your syntax is correct. You have a create a false " time
>>> variable" first , let's call it pseudotime, with values EQ 2 for
>>> controls
>>> and EQ 1 for cases. This variable acts as time on the COXREG command.
>>> Status is defined by CaseControl, the covariable/factor is HealthStatus,
>>> and Matchgroup acts as strata variable.
>>> 
>>>  Did you try the Mantel-Haenszel statistic approach?
>>> 
>>>  Sorry I can't be more detailed/helpful, but I'm at an airport right
now,

>>> with just my laptop (away from the desktop office computer with all my
>>> old
>>> syntax collection.
>>> 
>>>  Regards,
>>>  Marta Garcia-Granero
>>> 
>>>  El 12/03/2016 a las 4:36, E. Bernardo escribió:
>>> 
>>>  Thank you for your comments, Marta and Rich.
>>>  Yes, raw data are available.  The summary data are just my example to
>>> illustrate my data. Actually, I tried to use the C regression (as trick
>>> to
>>> conduct Conditional regression in SPSS).  However, the SPSS reports only
>>> the -2LL. I dont know if I did the correct trick.
>>>  Marta, following the variable names you provided in the previous email,
>>> here is my syntax:
>>>  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus  
>>> /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>>>  What is wrong with my syntax?
>>>  Thank you.
>>> 
>>>      On Friday, March 11, 2016 2:27 AM, Rich Ulrich &lt;
>>
>>> rich-ulrich@
>>
>>> &gt; wrote:
>>> 
>>> 
>>>    #yiv5634543243 --.yiv5634543243hmmessage
>>> P{margin:0px;padding:0px;}#yiv5634543243
>>> body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243 
>>> As Marta G-G says, you are very limited if you don't have the raw data.
>>>  And, abstractly, I'm not grasping how the McNemar Test would fit, even
>>> for a
>>>  simple pair.
>>> 
>>>  Given the summary numbers, you have a simple contingency table.
>>>  If those are the numbers, there is not much doubt about a difference.
>>> 
>>>  However, if the "matching" was important, then taking it into account
>>>  would reduce the size of the apparent effect.  That's simple logic.
> ("Why
>>> do we
>>>  want to match?  - Because those variables might account for the
>>> outcome.")
>>> 
>>>  Often, trying to match is useful for collecting/selecting Controls to
>>> use.  However,
>>>  I have long been hostile to analyzing such data as "matched", given (a)
>>> the
>>>  imprecision of much of such matching ("age within 4 years"); (b) the
> loss
>>> of
>>>  d.f.  in the analysis; and, (c) the weakness of treating the matching
>>> covariates
>>>  essentially as categories instead of as continuous measures.  - The
>>> alternative
>>>  of using the matching variables as covariates (in a logistic
regression,

>>> here)
>>>  is almost bound to be more powerful and more robust.  - That, in turn,
>>> requires
>>>  that the data be entered with a line for each subject, with the Group,
>>> Status,
>>>  and personal covariates.
>>> 
>>>  --
>>>  Rich Ulrich
>>> 
>>> 
>>> 
>>>    Date: Thu, 10 Mar 2016 05:46:45 +0000
>>>  From:
>>
>>> [hidden email]
>>
>>>  Subject: Mc Nemar Test for 1:2 Case-Control ?
>>>  To:
>>
>>> [hidden email]
>>
>>> 
>>>    Dear Members,
>>>  Consider the 1:2 matched study where each case is matched with 2
>>> controls.  Health status (classified as "+" or "-" ) of all cases and
>>> controls were recorded. Summary of the  gathered data looks like as
>>> follows:
>>>  Group     HealthStatus   Count Case              +                50
>>> Case              -                 50 Control          +              
>>>  
>>> 10 Control           -                 190
>>>  Can we use McNemar Test to test if the proportion of cases on the "+"
>>> HealthStatus is greater than the controls? Please suggest an appropriate
>>> test if McNemar test is not appropriate.
>>>  Thank you. 
>>>      ===================== To manage your subscription to SPSSX-L, send
a

>>> message to
>>
>>> [hidden email]
>>
>>>  (not to SPSSX-L), with no body text except the command. To leave the
>>> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
>>> subscriptions, send the command INFO REFCARD 
>>> 
>>>     
>>> 
>>>  =====================To manage your subscription to SPSSX-L, send a
>>> message
>>
>>> [hidden email]
>>
>>>  (not to SPSSX-L), with no body text except thecommand. To leave the
> list,
>>> send the commandSIGNOFF SPSSX-LFor a list of commands to manage
>>> subscriptions, send the commandINFO REFCARD
>>>
>>>
>>> =====================
>>> To manage your subscription to SPSSX-L, send a message to
>>
>>> [hidden email]
>>
>>>  (not to SPSSX-L), with no body text except the
>>> command. To leave the list, send the command
>>> SIGNOFF SPSSX-L
>>> For a list of commands to manage subscriptions, send the command
>>> INFO REFCARD
>>
>>
>>
>>
>>
>> -----
>> --
>> Bruce Weaver
>
>> bweaver@
>
>> http://sites.google.com/a/lakeheadu.ca/bweaver/
>>
>> "When all else fails, RTFM."
>>
>> NOTE: My Hotmail account is not monitored regularly.
>> To send me an e-mail, please use the address shown above.
>>
>> --
>> View this message in context:
>> http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731793.html
>> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>>
>> =====================
>> To manage your subscription to SPSSX-L, send a message to
>
>> [hidden email]
>
>>  (not to SPSSX-L), with no body text except the
>> command. To leave the list, send the command
>> SIGNOFF SPSSX-L
>> For a list of commands to manage subscriptions, send the command
>> INFO REFCARD
>>
>>
>> =====================
>> To manage your subscription to SPSSX-L, send a message to
>
>> [hidden email]
>
>>  (not to SPSSX-L), with no body text except the
>> command. To leave the list, send the command
>> SIGNOFF SPSSX-L
>> For a list of commands to manage subscriptions, send the command
>> INFO REFCARD
>
>
>
>
>
> -----
> --
> Bruce Weaver

> bweaver@

> http://sites.google.com/a/lakeheadu.ca/bweaver/
>
> "When all else fails, RTFM."
>
> NOTE: My Hotmail account is not monitored regularly.
> To send me an e-mail, please use the address shown above.
>
> --
> View this message in context:
> http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731801.html
> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> [hidden email]

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD
>
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> [hidden email]

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
--
Bruce Weaver
[hidden email]
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

NOTE: My Hotmail account is not monitored regularly.
To send me an e-mail, please use the address shown above.

--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731838.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD

===================== To manage your subscription to SPSSX-L, send a message to [hidden email] (not to SPSSX-L), with no body text except the command. To leave the list, send the command SIGNOFF SPSSX-L For a list of commands to manage subscriptions, send the command INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Bruce Weaver
Administrator
Thanks.  Given your results (OR = 1.000067, p < .0001), it would appear that your sample size is very large, because you are getting a very low p-value for an OR that is nowhere near clinical significance.  What is the N?  

E. Bernardo-2 wrote
Outcome = 1, 0 (1 case, 2 control)IV = 1, 0 (pain, no pain)

    On Thursday, March 31, 2016 2:40 AM, Bruce Weaver <[hidden email]> wrote:
 

 Hi Eins.  Yes, OR = Exp(B).  If you add (EXPONENTIATED) after SOLUTION on the
/PRINT sub-command, you'll see Exp(B) displayed in the table of coefficients
(with a confidence interval). 

An OR = 1.000067 normally would be taken to indicate no important effect.
Despite being such a small effect size, the Wald test value is huge
(Chi-square = 23.582, df = 1, p < .0001). 

What is the context?  (If you gave it earlier in the thread, I missed it.)
What is the outcome variable, and what is the dichotomous explanatory
variable? 

Cheers,
Bruce



E. Bernardo-2 wrote
> Dear Bruce, 
> I modified the first line of your syntax by changing WITH to BY because X
> is categorical with two values (0 and 1).  I also put (order=descending)
> as shown below.
> * Generalized Estimating Equations.
> GENLIN outcome (REFERENCE=FIRST) BY X (Order = descending)
> /MODEL X INTERCEPT=YES  DISTRIBUTION=BINOMIAL LINK=LOGIT/REPEATED
> SUBJECT=Stratum SORT=YES  CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES 
> COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE)
> UPDATECORR=1/MISSING CLASSMISSING=EXCLUDE/PRINT CPS DESCRIPTIVES MODELINFO
> FIT SUMMARY SOLUTION./PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY
> SOLUTION.
>
>  The GEE outputs are as follows:
>
> | Parameter | B | Std. Error | 95% Wald Confidence Interval | Hypothesis
> Test |
> | Lower | Upper | Wald Chi-Square | df | Sig. |
> | (Intercept) | -0.000046015394 | 0.000005938070 | -0.000057653798 |
> -0.000034376990 | 60.050 | 1 | .000 |
> | [X=1.00] | 0.000066959532 | 0.000013788672 | 0.000039934232 |
> 0.000093984832 | 23.582 | 1 | .000 |
> | [X=.00] | 0a |   |   |   |   |   |   |
> | (Scale) | 1 |   |   |   |   |   |   |
>
>
> How will be compute the Odds Ratio? Is it OR = Exp(B) = exp(.000066959532)
> = 1.000067?The B coefficients look weird!  Any comment about the outputs?
> Thank you.Eins
>
>    On Thursday, March 24, 2016 12:24 AM, Bruce Weaver <

> bruce.weaver@

> > wrote:

>
>  Okay!  Have you tried GENLIN using GEE as an alternative to conditional
> logistic regression?  Several years ago, I estimated some conditional
> logistic regression models using Stata, then some time later, analyzed the
> same data using GENLIN with GEE.  The results were very similar.  You can
> see the comparisons in this old thread from comp.soft-sys.stat.spss:
>
> https://groups.google.com/forum/#!topic/comp.soft-sys.stat.spss/zkxR016mZxM
>
> If I understand your COXREG command, I think the GENLIN syntax would be
> something like this:
>
> * Generalized Estimating Equations.
> GENLIN outcome (REFERENCE=FIRST) WITH X
>  /MODEL X INTERCEPT=YES
>   DISTRIBUTION=BINOMIAL LINK=LOGIT
>  /REPEATED SUBJECT=Stratum SORT=YES
>   CORRTYPE=UNSTRUCTURED ADJUSTCORR=YES
>   COVB=ROBUST MAXITERATIONS=100 PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
>  /MISSING CLASSMISSING=EXCLUDE
>  /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.
>
> This assumes X is continuous.  If it is categorical, change WITH to BY on
> the first line.
>
> This model may not converge either, which would suggest there's some
> problem
> with your data.  But I think it's worth a try.
>
> HTH.
>
>
>
> E. Bernardo wrote
>> Thank you Bruce for your comments.
>> The warning was "Since coefficients did not converge, no further models
>> will be fitted."The Iteration History states that "At least one
>> coefficient is tending to infinity after 3 iterations".So increasing the
>> number of iteration from 20 to 50 does not help since it stopped at the
>> 3rd iteration.  Any further suggestion to solve the problem is highly
>> solicited.
>>
>> Thank you.
>>
>>
>>    On Wednesday, March 23, 2016 2:04 AM, Bruce Weaver <
>
>> bruce.weaver@
>
>> > wrote:
>> 
>>
>>  Did you try increasing the number of iterations on the /CRITERIA
>> sub-command?
>> E.g.,
>>
>> COXREG faketime
>>   /STATUS=outcome(1)
>>   /STRATA=Stratum
>>   /METHOD=ENTER X
>>   /CRITERIA=PIN(.05) POUT(.10) ITERATE(50).
>>
>>
>>
>>
>> E. Bernardo wrote
>>> Thank you for the link. I think my SPSS syntax now is correct.COXREG
>>> faketime  /STATUS=outcome(1)  /STRATA=Stratum  /METHOD=ENTER X  
>>> /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>>> However there is warning as part of the outputs. This warning is:"Since
>>> coefficients did not converge, no further models will be fitted."
>>> And the odds ratio is too large: Exp(B) = 74.769
>>> Is the odds ratio wrong?
>>> SPSS outputs are pasted below.
>>> Eins
>>>
>>>
>>> | Warnings |  |  |  |  |  |  |  |  |  |
>>> | Since coefficients did not converge, no further models will be fitted.
>>> |
>>> |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Case Processing Summary |  |  |  |  |  |  |
>>> |   | N | Percent |  |  |  |  |  |  |
>>> | Cases available in analysis | Eventa | 47 | 33.3% |  |  |  |  |  |  |
>>> | Censored | 94 | 66.7% |  |  |  |  |  |  |
>>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>>> | Cases dropped | Cases with missing values | 0 | 0.0% |  |  |  |  |  | 
>>> |
>>> | Cases with negative time | 0 | 0.0% |  |  |  |  |  |  |
>>> | Censored cases before the earliest event in a stratum | 0 | 0.0% |  | 
>>> |
>>> |  |  |  |
>>> | Total | 0 | 0.0% |  |  |  |  |  |  |
>>> | Total | 141 | 100.0% |  |  |  |  |  |  |
>>> | a. Dependent Variable: faketime |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Stratum Statusa |  |  |  |  |  |  |
>>> | Stratum | Event | Censored | Censored Percent |  |  |  |  |  |  |
>>> |          1.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          2.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          3.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          4.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          5.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          6.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          7.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          8.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |          9.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         10.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         11.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         12.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         13.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         14.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         15.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         16.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         17.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         18.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         19.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         20.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         21.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         22.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         23.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         24.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         25.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         26.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         27.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         28.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         29.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         30.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         31.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         32.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         33.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         34.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         35.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         36.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         37.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         38.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         39.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         40.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         41.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         42.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         43.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         44.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         45.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         46.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> |         47.0 | 1 | 2 | 66.7% |  |  |  |  |  |  |
>>> | Total | 47 | 94 | 66.7% |  |  |  |  |  |  |
>>> | a. The strata variable is : Stratum |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Block 0: Beginning Block |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Omnibus Tests of Model Coefficients |  |  |  |  |  |  |  |  |  |
>>> | -2 Log Likelihood |  |  |  |  |  |  |  |  |  |
>>> | 103.270 |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Block 1: Method = Enter |  |  |  |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Iteration Historyb |  |  |  |  |  |  |  |
>>> |   | -2 Log Likelihooda | Coefficient |  |  |  |  |  |  |  |
>>> | X |  |  |  |  |  |  |  |
>>> | 1 | 80.334 | 2.071 |  |  |  |  |  |  |  |
>>> | 2 | 76.835 | 3.255 |  |  |  |  |  |  |  |
>>> | 3 | 75.745 | 4.314 |  |  |  |  |  |  |  |
>>> | a. Beginning Block Number 0, initial Log Likelihood function: -2 Log
>>> likelihood: 103.270 |  |  |  |  |  |  |  |
>>> | b. At least one coefficient is tending to infinity after 3 iterations
>>> |
>>> |  |  |  |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Omnibus Tests of Model Coefficientsa |
>>> | -2 Log Likelihood | Overall (score) | Change From Previous Step |
>>> Change
>>> From Previous Block |
>>> | Chi-square | df | Sig. | Chi-square | df | Sig. | Chi-square | df |
>>> Sig.
>>> |
>>> | 75.745 | 20.024 | 1 | .000 | 27.524 | 1 | .000 | 27.524 | 1 | .000 |
>>> | a. Beginning Block Number 1. Method = Enter |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Variables in the Equation |  |  |  |
>>> |   | B | SE | Wald | df | Sig. | Exp(B) |  |  |  |
>>> | X | 4.314 | 1.861 | 5.375 | 1 | .020 | 74.769 |  |  |  |
>>> |  |  |  |  |  |  |  |  |  |  |
>>> | Covariate Means |  |  |  |  |  |  |  |  |
>>> |   | Mean |  |  |  |  |  |  |  |  |
>>> | X | .262 |  |  |  |  |  |  |  |  |
>>>
>>> 
>>>
>>>    On Saturday, March 12, 2016 5:35 PM, Marta Garcia-Granero <
>>
>>> mgarciagranero@
>>
>>> > wrote:
>>> 
>>>
>>>  Hi
>>> 
>>>  I don't think your syntax is correct. You have a create a false " time
>>> variable" first , let's call it pseudotime, with values EQ 2 for
>>> controls
>>> and EQ 1 for cases. This variable acts as time on the COXREG command.
>>> Status is defined by CaseControl, the covariable/factor is HealthStatus,
>>> and Matchgroup acts as strata variable.
>>> 
>>>  Did you try the Mantel-Haenszel statistic approach?
>>> 
>>>  Sorry I can't be more detailed/helpful, but I'm at an airport right
now,
>>> with just my laptop (away from the desktop office computer with all my
>>> old
>>> syntax collection.
>>> 
>>>  Regards,
>>>  Marta Garcia-Granero
>>> 
>>>  El 12/03/2016 a las 4:36, E. Bernardo escribió:
>>> 
>>>  Thank you for your comments, Marta and Rich.
>>>  Yes, raw data are available.  The summary data are just my example to
>>> illustrate my data. Actually, I tried to use the C regression (as trick
>>> to
>>> conduct Conditional regression in SPSS).  However, the SPSS reports only
>>> the -2LL. I dont know if I did the correct trick.
>>>  Marta, following the variable names you provided in the previous email,
>>> here is my syntax:
>>>  DATASET ACTIVATE DataSet2. COXREG Casecontrol   /STATUS=HeathStatus  
>>> /STRATA=Matchgroup   /CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
>>>  What is wrong with my syntax?
>>>  Thank you.
>>> 
>>>      On Friday, March 11, 2016 2:27 AM, Rich Ulrich <
>>
>>> rich-ulrich@
>>
>>> > wrote:
>>> 
>>> 
>>>    #yiv5634543243 --.yiv5634543243hmmessage
>>> P{margin:0px;padding:0px;}#yiv5634543243
>>> body.yiv5634543243hmmessage{font-size:12pt;font-family:Calibri;}#yiv5634543243 
>>> As Marta G-G says, you are very limited if you don't have the raw data.
>>>  And, abstractly, I'm not grasping how the McNemar Test would fit, even
>>> for a
>>>  simple pair.
>>> 
>>>  Given the summary numbers, you have a simple contingency table.
>>>  If those are the numbers, there is not much doubt about a difference.
>>> 
>>>  However, if the "matching" was important, then taking it into account
>>>  would reduce the size of the apparent effect.  That's simple logic.
> ("Why
>>> do we
>>>  want to match?  - Because those variables might account for the
>>> outcome.")
>>> 
>>>  Often, trying to match is useful for collecting/selecting Controls to
>>> use.  However,
>>>  I have long been hostile to analyzing such data as "matched", given (a)
>>> the
>>>  imprecision of much of such matching ("age within 4 years"); (b) the
> loss
>>> of
>>>  d.f.  in the analysis; and, (c) the weakness of treating the matching
>>> covariates
>>>  essentially as categories instead of as continuous measures.  - The
>>> alternative
>>>  of using the matching variables as covariates (in a logistic
regression,
>>> here)
>>>  is almost bound to be more powerful and more robust.  - That, in turn,
>>> requires
>>>  that the data be entered with a line for each subject, with the Group,
>>> Status,
>>>  and personal covariates.
>>> 
>>>  --
>>>  Rich Ulrich
>>> 
>>> 
>>> 
>>>    Date: Thu, 10 Mar 2016 05:46:45 +0000
>>>  From:
>>
>>> einsbernardo@.com
>>
>>>  Subject: Mc Nemar Test for 1:2 Case-Control ?
>>>  To:
>>
>>> SPSSX-L@.UGA
>>
>>> 
>>>    Dear Members,
>>>  Consider the 1:2 matched study where each case is matched with 2
>>> controls.  Health status (classified as "+" or "-" ) of all cases and
>>> controls were recorded. Summary of the  gathered data looks like as
>>> follows:
>>>  Group     HealthStatus   Count Case              +                50
>>> Case              -                 50 Control          +              
>>>  
>>> 10 Control           -                 190
>>>  Can we use McNemar Test to test if the proportion of cases on the "+"
>>> HealthStatus is greater than the controls? Please suggest an appropriate
>>> test if McNemar test is not appropriate.
>>>  Thank you. 
>>>      ===================== To manage your subscription to SPSSX-L, send
a
>>> message to
>>
>>> LISTSERV@.UGA
>>
>>>  (not to SPSSX-L), with no body text except the command. To leave the
>>> list, send the command SIGNOFF SPSSX-L For a list of commands to manage
>>> subscriptions, send the command INFO REFCARD 
>>> 
>>>     
>>> 
>>>  =====================To manage your subscription to SPSSX-L, send a
>>> message
>>
>>> toLISTSERV@.UGA
>>
>>>  (not to SPSSX-L), with no body text except thecommand. To leave the
> list,
>>> send the commandSIGNOFF SPSSX-LFor a list of commands to manage
>>> subscriptions, send the commandINFO REFCARD
>>>
>>>
>>> =====================
>>> To manage your subscription to SPSSX-L, send a message to
>>
>>> LISTSERV@.UGA
>>
>>>  (not to SPSSX-L), with no body text except the
>>> command. To leave the list, send the command
>>> SIGNOFF SPSSX-L
>>> For a list of commands to manage subscriptions, send the command
>>> INFO REFCARD
>>
>>
>>
>>
>>
>> -----
>> --
>> Bruce Weaver
>
>> bweaver@
>
>> http://sites.google.com/a/lakeheadu.ca/bweaver/
>>
>> "When all else fails, RTFM."
>>
>> NOTE: My Hotmail account is not monitored regularly.
>> To send me an e-mail, please use the address shown above.
>>
>> --
>> View this message in context:
>> http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731793.html
>> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>>
>> =====================
>> To manage your subscription to SPSSX-L, send a message to
>
>> LISTSERV@.UGA
>
>>  (not to SPSSX-L), with no body text except the
>> command. To leave the list, send the command
>> SIGNOFF SPSSX-L
>> For a list of commands to manage subscriptions, send the command
>> INFO REFCARD
>>
>>
>> =====================
>> To manage your subscription to SPSSX-L, send a message to
>
>> LISTSERV@.UGA
>
>>  (not to SPSSX-L), with no body text except the
>> command. To leave the list, send the command
>> SIGNOFF SPSSX-L
>> For a list of commands to manage subscriptions, send the command
>> INFO REFCARD
>
>
>
>
>
> -----
> --
> Bruce Weaver

> bweaver@

> http://sites.google.com/a/lakeheadu.ca/bweaver/
>
> "When all else fails, RTFM."
>
> NOTE: My Hotmail account is not monitored regularly.
> To send me an e-mail, please use the address shown above.
>
> --
> View this message in context:
> http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731801.html
> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD
>
>
> =====================
> To manage your subscription to SPSSX-L, send a message to

> LISTSERV@.UGA

>  (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD





-----
--
Bruce Weaver
[hidden email]
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

NOTE: My Hotmail account is not monitored regularly.
To send me an e-mail, please use the address shown above.

--
View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Mc-Nemar-Test-for-1-2-Case-Control-tp5731696p5731838.html
Sent from the SPSSX Discussion mailing list archive at Nabble.com.

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD


=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
--
Bruce Weaver
bweaver@lakeheadu.ca
http://sites.google.com/a/lakeheadu.ca/bweaver/

"When all else fails, RTFM."

PLEASE NOTE THE FOLLOWING: 
1. My Hotmail account is not monitored regularly. To send me an e-mail, please use the address shown above.
2. The SPSSX Discussion forum on Nabble is no longer linked to the SPSSX-L listserv administered by UGA (https://listserv.uga.edu/).
Reply | Threaded
Open this post in threaded view
|

Re: Mc Nemar Test for 1:2 Case-Control ?

Art Kendall
In reply to this post by E. Bernardo-2
Such a coarse DV!

Many populations would always have some pain.
Art Kendall
Social Research Consultants
12