Tennis / likelyhood of winning a second time

classic Classic list List threaded Threaded
12 messages Options
Reply | Threaded
Open this post in threaded view
|

Tennis / likelyhood of winning a second time

drfg2008
This post was updated on .
The question is whether a tennis player who won the first set, is more likely to win the second set.
 
For this I have two variables: Set 1 and Set 2 for the results of the sets

(SET1_win / SET2_win 1 / 1= Player 1 wins, 2 = Player 2 wins).

In addition, I have the game results in set 1 and set 2

ScoreSet1T1 for the number of points of player 1 in the first set  
ScoreSet1T2 for the number of points of Player 2 in the first set
ScoreSet2T1 for the number of points of player 1 in the second set
ScoreSet2T2 for the number of points of player 2 in the second set

The record looks like this:

ScoreSet1T1
ScoreSet1T2
ScoreSet2T1
ScoreSet2T2
Set1_win
Set2_win

I could also provide some data.

Now I'm not quite clear which method is best. Any help appreciated.

Thanks

Dr. Frank Gaeth

Reply | Threaded
Open this post in threaded view
|

Re: Tennis

lori.andersen
I would do a chi-square.   You have four possible outcomes for a 2 set match: win no sets, win set 1 only, win both sets, win set 2 only.   A chi-square will answer the question if these four outcomes occur with equal likelihood or not.  You would be most interested in the "win both sets" outcome. 



On Mon, May 14, 2012 at 6:03 AM, drfg2008 [via SPSSX Discussion] <[hidden email]> wrote:
The question is whether a tennis player who won the first set, is more likely to win the second set.
 
For this I have two variables: Set 1 and Set 2 for the results of the sets

(SET1_win / SET2_win 1 / 1= Player 1 wins, 2 = Player 2 wins).

In addition, I have the game results in set 1 and set 2

ScoreSet1T1 for the number of points of player 1 in the first set  
ScoreSet1T2 for the number of points of Player 2 in the first set
ScoreSet2T1 for the number of points of player 1 in the second set
ScoreSet2T2 for the number of points of player 2 in the second set

The record looks like this:

ScoreSet1T1
ScoreSet1T2
ScoreSet2T1
ScoreSet2T2
Set1_win
Set2_win

I could also provide some data.

Now I'm not quite clear which method is best. Any help appreciated.

Thanks

Dr. Frank Gaeth
FU-Berlin



If you reply to this email, your message will be added to the discussion below:
http://spssx-discussion.1045642.n5.nabble.com/Tennis-tp5708820.html
To start a new topic under SPSSX Discussion, email [hidden email]
To unsubscribe from SPSSX Discussion, click here.
NAML



--
Lori Andersen
Ph.D. student, Educational Policy, Planning & Leadership
College of William & Mary
Williamsburg, VA


Reply | Threaded
Open this post in threaded view
|

Re: Tennis

drfg2008
This post was updated on .
As far as I understand a Chi-square test is testing independence between the two sets, which is definitely not the case since the winner of set 1 is stronger and will be more likely to win set 2, too. And this is not my question. The question is if the likelyhood increases to win again when the player has won before.

I thougth about the McNemar test first since this tests if a change from winning to loosing is equal likely as the change from loosing to winning. If the hypothesis (see above) is true (namely that a winner is more likely to win again) there should be more changes from one side to the other.

But this can not be the solution, since the winner is the non-looser and the looser is the non-winner in equal proportions.
Dr. Frank Gaeth

Reply | Threaded
Open this post in threaded view
|

Re: Tennis

Marta Garcia-Granero
Hi:

I think you have paired data, since in the first match, one member of
the pair wins, and, therefore, the other one loses. You have to take
into account the pairing and treat the data as a matched cohort study.
McNemar test will do that, but you get only a p-value, not an estimate
of the increase of likelihood of victory. You need a relative risk that
takes into account the matching. Look for this paper: The Stata Journal
(2004) 4, Number 3, pp. 274–281, Analysis of matched cohort data, by
Peter Cummings Barbara McKnight.

I have also read that log-binomial or Poisson regression can be used for
that.

I hope this helps,
Marta GG

El 14/05/2012 14:06, drfg2008 escribió:

> As far as I understand a Chi-square test is testing independence between the
> two sets, which is definitely not the case since the winner of set 1 is
> stronger and will be more likely to win set 2, too. And this is not my
> question. The question is if the likelyhood increases to win again when the
> player has won before.
>
> I thougth about the McNemar test first since this tests if a change from
> winning to loosing is equal likely as the change from loosing to winning. If
> the hypothesis (see above) is true (namely that a winner is more likely to
> win again) there should be more changes from one side to the other.
>
>
>
> -----
> Dr. Frank Gaeth
> FU-Berlin
>
> --
> View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Tennis-tp5708820p5708910.html
> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>
> =====================
> To manage your subscription to SPSSX-L, send a message to
> [hidden email] (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD
>

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

David Marso
Administrator
In reply to this post by drfg2008
As is typical, your question is as clear as MUD!
Please carefully reformulate this with the addition of whatever assumptions you are making about the data and try again.  First step back and reread your question to a hopefully forgiving coworker and see if you get anything other than a blank stare.  You don't do yourself any favors by repeatedly posting nebulous carelessly formulated questions to this list which require 4-5 iterations to gel.  You seem to think this group is here as a free consulting service and that you don't need to use your own thinking about your research!  Last week it was Futball, this week Tennis, a month or so ago some nebulous 5000 variable GLM and Poisson regression prior to that and Python in the mix as well.  This wouldn't be so much a problem if it weren't for the fact that you *NEVER* bother to pitch in and help anyone else.
Look up Reciprocity in your German/English dictionary.
---
drfg2008 wrote
The question is whether a tennis player who won the first set, is more likely to win the second set.
 
For this I have two variables: Set 1 and Set 2 for the results of the sets

(SET1_win / SET2_win 1 / 1= Player 1 wins, 2 = Player 2 wins).

In addition, I have the game results in set 1 and set 2

ScoreSet1T1 for the number of points of player 1 in the first set  
ScoreSet1T2 for the number of points of Player 2 in the first set
ScoreSet2T1 for the number of points of player 1 in the second set
ScoreSet2T2 for the number of points of player 2 in the second set

The record looks like this:

ScoreSet1T1
ScoreSet1T2
ScoreSet2T1
ScoreSet2T2
Set1_win
Set2_win

I could also provide some data.

Now I'm not quite clear which method is best. Any help appreciated.

Thanks
Please reply to the list and not to my personal email.
Those desiring my consulting or training services please feel free to email me.
---
"Nolite dare sanctum canibus neque mittatis margaritas vestras ante porcos ne forte conculcent eas pedibus suis."
Cum es damnatorum possederunt porcos iens ut salire off sanguinum cliff in abyssum?"
Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

drfg2008
This post was updated on .
@David

This wouldn't be so much a problem if it weren't for the fact that you *NEVER* bother to pitch in and help anyone else. Look up Reciprocity in your German/English dictionary.


Look at that: http://www.statistik-tutorial.de/forum/index.php

I posted over 1382 answers here for people asking questions.

Look at that: youtube. Here I posted more than 60 films / introductions into SPSS (more than 100 thousand downloads)

All for free, David.
Dr. Frank Gaeth

Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

David Marso
Administrator
Congratulations on your contributions to German intellectual culture.
I was referring to the SPSS-X list (here, this place...).
You still need to clarify your question.

drfg2008 wrote
@David

This wouldn't be so much a problem if it weren't for the fact that you *NEVER* bother to pitch in and help anyone else. Look up Reciprocity in your German/English dictionary.


Look at that: http://www.statistik-tutorial.de/forum/index.php

I posted over 1382 answers here for people asking questions.

Look at that: youtube. Here I posted more than 60 films / introductions into SPSS (more than 100 thousand downloads)

All for free, David.
Please reply to the list and not to my personal email.
Those desiring my consulting or training services please feel free to email me.
---
"Nolite dare sanctum canibus neque mittatis margaritas vestras ante porcos ne forte conculcent eas pedibus suis."
Cum es damnatorum possederunt porcos iens ut salire off sanguinum cliff in abyssum?"
Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

drfg2008
In reply to this post by drfg2008
Thought about using a binary log Model, but couldn’t find a proper solution.


The question is part of an ongoing scientific discussion. Examples [1] [2]


[1] http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0024532

[2] http://statracket.net/A.%20James%20O%27Malley.pdf


[3] @ D. M.:

146.063 Downloads 25.03.2008 – 14.05.2012

Top Countries
Germany
Austria
Switzerland
Netherlands
United States
United Kingdom
Spain
Italy
India
Sweden
Dr. Frank Gaeth

Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

Marta Garcia-Granero
Frank:

Did you read my reply to your first message?

See below a simple dataset, adapted from the Stata Journal paper I
mentioned then. I have changed the variable names to Set1 & Set2.

This is the syntax I used for the conditional log-binomial regression model:

* Ecuaciones de estimación generalizadas.
GENLIN   Set2 (REFERENCE=FIRST)
   BY Set1  (ORDER=DESCENDING)
  /MODEL  Set1
   INTERCEPT=YES
   DISTRIBUTION=BINOMIAL
   LINK=LOG
  /CRITERIA METHOD=FISHER(1) SCALE=1
   MAXITERATIONS=100 MAXSTEPHALVING=5
   PCONVERGE=1E-006(ABSOLUTE)
   SINGULAR=1E-012
   ANALYSISTYPE=3 CILEVEL=95
  /REPEATED
   SUBJECT=Match
   WITHINSUBJECT=Set1
   SORT=YES CORRTYPE=INDEPENDENT
   ADJUSTCORR=YES COVB=ROBUST
   MAXITERATIONS=100
   PCONVERGE=1e-006(ABSOLUTE) UPDATECORR=1
  /MISSING CLASSMISSING=EXCLUDE
  /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION(EXPONENTIATED).

HTH,
Marta

Dataset:

* Use numerical values for Set1&Set2 (0=Loser; 1=Winner).
Match Set1 Set2
1    Winner    Winner
1    Loser    Winner
2    Loser    Winner
2    Winner    Winner
3    Winner    Winner
3    Loser    Winner
4    Winner    Winner
4    Loser    Winner
5    Winner    Winner
5    Loser    Winner
6    Loser    Winner
6    Winner    Winner
7    Loser    Winner
7    Winner    Winner
8    Winner    Winner
8    Loser    Winner
9    Loser    Winner
9    Winner    Winner
10    Loser    Winner
10    Winner    Winner
11    Winner    Winner
11    Loser    Winner
12    Loser    Winner
12    Winner    Winner
13    Winner    Winner
13    Loser    Winner
14    Winner    Winner
14    Loser    Winner
15    Winner    Winner
15    Loser    Winner
16    Loser    Winner
16    Winner    Winner
17    Loser    Winner
17    Winner    Winner
18    Winner    Winner
18    Loser    Winner
19    Loser    Winner
19    Winner    Winner
20    Winner    Winner
20    Loser    Winner
21    Winner    Winner
21    Loser    Winner
22    Winner    Winner
22    Loser    Winner
23    Winner    Winner
23    Loser    Winner
24    Winner    Winner
24    Loser    Winner
25    Loser    Winner
25    Winner    Winner
26    Winner    Winner
26    Loser    Winner
27    Winner    Winner
27    Loser    Winner
28    Loser    Winner
28    Winner    Winner
29    Winner    Winner
29    Loser    Winner
30    Loser    Winner
30    Winner    Winner
31    Winner    Winner
31    Loser    Winner
32    Winner    Winner
32    Loser    Winner
33    Loser    Winner
33    Winner    Winner
34    Loser    Winner
34    Winner    Winner
35    Loser    Winner
35    Winner    Winner
36    Loser    Winner
36    Winner    Winner
37    Winner    Winner
37    Loser    Winner
38    Winner    Winner
38    Loser    Winner
39    Loser    Winner
39    Winner    Winner
40    Winner    Winner
40    Loser    Winner
41    Winner    Winner
41    Loser    Winner
42    Loser    Winner
42    Winner    Winner
43    Winner    Winner
43    Loser    Winner
44    Loser    Winner
44    Winner    Winner
45    Loser    Winner
45    Winner    Winner
46    Loser    Winner
46    Winner    Winner
47    Winner    Winner
47    Loser    Winner
48    Winner    Winner
48    Loser    Winner
49    Winner    Winner
49    Loser    Winner
50    Winner    Winner
50    Loser    Winner
51    Winner    Winner
51    Loser    Winner
52    Winner    Winner
52    Loser    Winner
53    Winner    Winner
53    Loser    Winner
54    Loser    Winner
54    Winner    Winner
55    Loser    Winner
55    Winner    Winner
56    Loser    Winner
56    Winner    Winner
57    Loser    Winner
57    Winner    Winner
58    Winner    Winner
58    Loser    Winner
59    Winner    Winner
59    Loser    Winner
60    Winner    Winner
60    Loser    Winner
61    Winner    Winner
61    Loser    Winner
62    Winner    Winner
62    Loser    Loser
63    Loser    Loser
63    Winner    Winner
64    Loser    Loser
64    Winner    Winner
65    Winner    Winner
65    Loser    Loser
66    Winner    Winner
66    Loser    Loser
67    Winner    Winner
67    Loser    Loser
68    Winner    Winner
68    Loser    Loser
69    Loser    Loser
69    Winner    Winner
70    Loser    Loser
70    Winner    Winner
71    Winner    Winner
71    Loser    Loser
72    Winner    Winner
72    Loser    Loser
73    Loser    Loser
73    Winner    Winner
74    Winner    Winner
74    Loser    Loser
75    Loser    Loser
75    Winner    Winner
76    Loser    Loser
76    Winner    Winner
77    Winner    Winner
77    Loser    Loser
78    Loser    Loser
78    Winner    Winner
79    Winner    Winner
79    Loser    Loser
80    Winner    Winner
80    Loser    Loser
81    Winner    Winner
81    Loser    Loser
82    Loser    Loser
82    Winner    Winner
83    Winner    Winner
83    Loser    Loser
84    Loser    Loser
84    Winner    Winner
85    Winner    Winner
85    Loser    Loser
86    Winner    Winner
86    Loser    Loser
87    Loser    Loser
87    Winner    Winner
88    Winner    Winner
88    Loser    Loser
89    Loser    Loser
89    Winner    Winner
90    Loser    Loser
90    Winner    Winner
91    Winner    Winner
91    Loser    Loser
92    Winner    Winner
92    Loser    Loser
93    Loser    Loser
93    Winner    Winner
94    Loser    Loser
94    Winner    Winner
95    Winner    Winner
95    Loser    Loser
96    Winner    Winner
96    Loser    Loser
97    Loser    Loser
97    Winner    Winner
98    Loser    Loser
98    Winner    Winner
99    Loser    Loser
99    Winner    Winner
100    Winner    Winner
100    Loser    Loser
101    Loser    Loser
101    Winner    Winner
102    Winner    Winner
102    Loser    Loser
103    Loser    Loser
103    Winner    Winner
104    Winner    Winner
104    Loser    Loser
105    Winner    Winner
105    Loser    Loser
106    Loser    Loser
106    Winner    Winner
107    Loser    Loser
107    Winner    Winner
108    Loser    Loser
108    Winner    Winner
109    Winner    Winner
109    Loser    Loser
110    Winner    Winner
110    Loser    Loser
111    Winner    Winner
111    Loser    Loser
112    Winner    Winner
112    Loser    Loser
113    Loser    Loser
113    Winner    Winner
114    Winner    Winner
114    Loser    Loser
115    Loser    Loser
115    Winner    Winner
116    Winner    Winner
116    Loser    Loser
117    Winner    Winner
117    Loser    Loser
118    Loser    Loser
118    Winner    Winner
119    Loser    Loser
119    Winner    Winner
120    Loser    Loser
120    Winner    Winner
121    Winner    Winner
121    Loser    Loser
122    Winner    Winner
122    Loser    Loser
123    Loser    Loser
123    Winner    Winner
124    Loser    Loser
124    Winner    Winner
125    Winner    Winner
125    Loser    Loser
126    Winner    Winner
126    Loser    Loser
127    Loser    Loser
127    Winner    Winner
128    Loser    Loser
128    Winner    Winner
129    Loser    Loser
129    Winner    Winner
130    Loser    Loser
130    Winner    Winner
131    Winner    Winner
131    Loser    Loser
132    Loser    Loser
132    Winner    Winner
133    Winner    Winner
133    Loser    Loser
134    Loser    Loser
134    Winner    Winner
135    Winner    Winner
135    Loser    Loser
136    Loser    Loser
136    Winner    Winner
137    Loser    Loser
137    Winner    Winner
138    Winner    Winner
138    Loser    Loser
139    Winner    Winner
139    Loser    Loser
140    Winner    Winner
140    Loser    Loser
141    Winner    Winner
141    Loser    Loser
142    Winner    Winner
142    Loser    Loser
143    Loser    Loser
143    Winner    Winner
144    Winner    Winner
144    Loser    Loser
145    Loser    Loser
145    Winner    Winner
146    Loser    Loser
146    Winner    Winner
147    Winner    Winner
147    Loser    Loser
148    Loser    Loser
148    Winner    Winner
149    Winner    Winner
149    Loser    Loser
150    Loser    Winner
150    Winner    Loser
151    Winner    Loser
151    Loser    Winner
152    Winner    Loser
152    Loser    Winner
153    Loser    Winner
153    Winner    Loser
154    Loser    Winner
154    Winner    Loser
155    Loser    Winner
155    Winner    Loser
156    Winner    Loser
156    Loser    Winner
157    Winner    Loser
157    Loser    Winner
158    Loser    Winner
158    Winner    Loser
159    Loser    Winner
159    Winner    Loser
160    Winner    Loser
160    Loser    Winner
161    Loser    Winner
161    Winner    Loser
162    Winner    Loser
162    Loser    Winner
163    Loser    Winner
163    Winner    Loser
164    Winner    Loser
164    Loser    Winner
165    Loser    Winner
165    Winner    Loser
166    Winner    Loser
166    Loser    Winner
167    Winner    Loser
167    Loser    Winner
168    Loser    Winner
168    Winner    Loser
169    Winner    Loser
169    Loser    Winner
170    Loser    Winner
170    Winner    Loser
171    Winner    Loser
171    Loser    Loser
172    Winner    Loser
172    Loser    Loser
173    Winner    Loser
173    Loser    Loser
174    Loser    Loser
174    Winner    Loser
175    Winner    Loser
175    Loser    Loser
176    Winner    Loser
176    Loser    Loser
177    Winner    Loser
177    Loser    Loser
178    Winner    Loser
178    Loser    Loser
179    Winner    Loser
179    Loser    Loser
180    Winner    Loser
180    Loser    Loser
181    Loser    Loser
181    Winner    Loser
182    Loser    Loser
182    Winner    Loser
183    Loser    Loser
183    Winner    Loser
184    Winner    Loser
184    Loser    Loser
185    Loser    Loser
185    Winner    Loser
186    Winner    Loser
186    Loser    Loser
187    Loser    Loser
187    Winner    Loser
188    Winner    Loser
188    Loser    Loser
189    Loser    Loser
189    Winner    Loser
190    Loser    Loser
190    Winner    Loser
191    Winner    Loser
191    Loser    Loser
192    Winner    Loser
192    Loser    Loser
193    Loser    Loser
193    Winner    Loser
194    Loser    Loser
194    Winner    Loser
195    Winner    Loser
195    Loser    Loser
196    Winner    Loser
196    Loser    Loser
197    Loser    Loser
197    Winner    Loser
198    Winner    Loser
198    Loser    Loser
199    Winner    Loser
199    Loser    Loser
200    Winner    Loser
200    Loser    Loser
201    Loser    Loser
201    Winner    Loser
202    Winner    Loser
202    Loser    Loser
203    Winner    Loser
203    Loser    Loser
204    Loser    Loser
204    Winner    Loser
205    Loser    Loser
205    Winner    Loser
206    Loser    Loser
206    Winner    Loser
207    Loser    Loser
207    Winner    Loser
208    Loser    Loser
208    Winner    Loser
209    Loser    Loser
209    Winner    Loser
210    Loser    Loser
210    Winner    Loser
211    Loser    Loser
211    Winner    Loser
212    Winner    Loser
212    Loser    Loser
213    Winner    Loser
213    Loser    Loser
214    Loser    Loser
214    Winner    Loser
215    Loser    Loser
215    Winner    Loser
216    Winner    Loser
216    Loser    Loser
217    Loser    Loser
217    Winner    Loser
218    Winner    Loser
218    Loser    Loser
219    Winner    Loser
219    Loser    Loser
220    Winner    Loser
220    Loser    Loser
221    Winner    Loser
221    Loser    Loser
222    Winner    Loser
222    Loser    Loser
223    Winner    Loser
223    Loser    Loser
224    Loser    Loser
224    Winner    Loser
225    Winner    Loser
225    Loser    Loser
226    Winner    Loser
226    Loser    Loser
227    Loser    Loser
227    Winner    Loser
228    Winner    Loser
228    Loser    Loser
229    Winner    Loser
229    Loser    Loser
230    Winner    Loser
230    Loser    Loser
231    Loser    Loser
231    Winner    Loser
232    Loser    Loser
232    Winner    Loser
233    Loser    Loser
233    Winner    Loser
234    Winner    Loser
234    Loser    Loser
235    Loser    Loser
235    Winner    Loser
236    Loser    Loser
236    Winner    Loser
237    Winner    Loser
237    Loser    Loser
238    Winner    Loser
238    Loser    Loser
239    Loser    Loser
239    Winner    Loser
240    Winner    Loser
240    Loser    Loser
241    Loser    Loser
241    Winner    Loser
242    Loser    Loser
242    Winner    Loser
243    Winner    Loser
243    Loser    Loser
244    Winner    Loser
244    Loser    Loser
245    Loser    Loser
245    Winner    Loser
246    Winner    Loser
246    Loser    Loser
247    Winner    Loser
247    Loser    Loser
248    Winner    Loser
248    Loser    Loser
249    Winner    Loser
249    Loser    Loser
250    Winner    Loser
250    Loser    Loser
251    Loser    Loser
251    Winner    Loser
252    Loser    Loser
252    Winner    Loser
253    Winner    Loser
253    Loser    Loser
254    Loser    Loser
254    Winner    Loser
255    Loser    Loser
255    Winner    Loser
256    Winner    Loser
256    Loser    Loser
257    Winner    Loser
257    Loser    Loser
258    Winner    Loser
258    Loser    Loser
259    Loser    Loser
259    Winner    Loser
260    Winner    Loser
260    Loser    Loser
261    Loser    Loser
261    Winner    Loser
262    Loser    Loser
262    Winner    Loser
263    Winner    Loser
263    Loser    Loser
264    Loser    Loser
264    Winner    Loser
265    Loser    Loser
265    Winner    Loser
266    Loser    Loser
266    Winner    Loser
267    Winner    Loser
267    Loser    Loser
268    Loser    Loser
268    Winner    Loser
269    Winner    Loser
269    Loser    Loser
270    Loser    Loser
270    Winner    Loser
271    Loser    Loser
271    Winner    Loser
272    Loser    Loser
272    Winner    Loser
273    Loser    Loser
273    Winner    Loser
274    Winner    Loser
274    Loser    Loser
275    Loser    Loser
275    Winner    Loser
276    Winner    Loser
276    Loser    Loser
277    Winner    Loser
277    Loser    Loser
278    Winner    Loser
278    Loser    Loser
279    Winner    Loser
279    Loser    Loser
280    Winner    Loser
280    Loser    Loser
281    Loser    Loser
281    Winner    Loser
282    Winner    Loser
282    Loser    Loser
283    Winner    Loser
283    Loser    Loser
284    Loser    Loser
284    Winner    Loser
285    Loser    Loser
285    Winner    Loser
286    Loser    Loser
286    Winner    Loser
287    Winner    Loser
287    Loser    Loser
288    Winner    Loser
288    Loser    Loser
289    Loser    Loser
289    Winner    Loser
290    Loser    Loser
290    Winner    Loser
291    Loser    Loser
291    Winner    Loser
292    Winner    Loser
292    Loser    Loser
293    Loser    Loser
293    Winner    Loser
294    Winner    Loser
294    Loser    Loser
295    Loser    Loser
295    Winner    Loser
296    Loser    Loser
296    Winner    Loser
297    Loser    Loser
297    Winner    Loser
298    Winner    Loser
298    Loser    Loser
299    Winner    Loser
299    Loser    Loser
300    Winner    Loser
300    Loser    Loser
301    Winner    Loser
301    Loser    Loser
302    Loser    Loser
302    Winner    Loser
303    Winner    Loser
303    Loser    Loser
304    Loser    Loser
304    Winner    Loser
305    Winner    Loser
305    Loser    Loser
306    Loser    Loser
306    Winner    Loser
307    Loser    Loser
307    Winner    Loser
308    Loser    Loser
308    Winner    Loser
309    Winner    Loser
309    Loser    Loser
310    Loser    Loser
310    Winner    Loser
311    Loser    Loser
311    Winner    Loser

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

drfg2008

Thanks Marta!

This is exactly what I was looking for. I tested the Syntax (probably Match should be unique?) with your data.

*************************

Parameter Estimates
Parameter B Std. Error 95% Wald Confidence Interval Hypothesis Test Exp(B) 95% Wald Confidence Interval for Exp(B)
                        Lower Upper Wald Chi-Square df Sig. Lower Upper
(Intercept) -.652 .0544 -.759 -.546 143.829 1 .000 .521 .468 .579
[Set1=2] .346 .0641 .220 .472 29.158 1 .000 1.414 1.247 1.603
[Set1=1] 0a . . . . . . 1 . .
(Scale) 1
Dependent Variable: Set2
Model: (Intercept), Set1
a Set to zero because this parameter is redundant.

Dr. Frank Gaeth

Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

Marta Garcia-Granero
El 15/05/2012 21:30, drfg2008 escribió:
> Thanks Marta!
>
> This is exactly what I was looking for. I tested the Syntax (probably Match
> should be unique?) with your data.

Yes, Match values should be, as in the example, 1 1 2 2 3 3.... It
identifies the two players (winner&loser of the first set) that played
one against the other. You can't have more than a pair of "1", or "2"...

BTW, I did a bit of math with the help of old fashioned scrap paper &
pencil and realized that your design can be seen as either a matched
cohort design (you classify players for exposition - 1t set outcome- and
watch the 2nd set to classify them as loser/winner), or  matched
case-control design (you classify players for the outcome of the 2nd
set, and look retrospectively for the outcome of the first). This makes
the output of a conditional log-binomial model and  conditional logistic
model exactly the same. Also, you could use contingency tables
stratified by Mach, and ask for the Mantel-Haenszel OR, and get the same
result.

Regards,
Marta GG

>
> *************************
>
> Parameter Estimates
> Parameter       B       Std. Error      95% Wald Confidence Interval            Hypothesis Test
> Exp(B)  95% Wald Confidence Interval for Exp(B)
>                          Lower   Upper   Wald Chi-Square df      Sig.            Lower   Upper
> (Intercept)     -.652   .0544   -.759   -.546   143.829 1       .000    .521    .468    .579
> [Set1=2]        .346    .0641   .220    .472    29.158  1       .000    1.414   1.247   1.603
> [Set1=1]        0a      .       .       .       .       .       .       1       .       .
> (Scale) 1
> Dependent Variable: Set2
> Model: (Intercept), Set1
> a Set to zero because this parameter is redundant.
>
>
>
> -----
> Dr. Frank Gaeth
> FU-Berlin
>
> --
> View this message in context: http://spssx-discussion.1045642.n5.nabble.com/Tennis-likelyhood-of-winning-a-second-time-tp5708820p5710325.html
> Sent from the SPSSX Discussion mailing list archive at Nabble.com.
>
> =====================
> To manage your subscription to SPSSX-L, send a message to
> [hidden email] (not to SPSSX-L), with no body text except the
> command. To leave the list, send the command
> SIGNOFF SPSSX-L
> For a list of commands to manage subscriptions, send the command
> INFO REFCARD
>

=====================
To manage your subscription to SPSSX-L, send a message to
[hidden email] (not to SPSSX-L), with no body text except the
command. To leave the list, send the command
SIGNOFF SPSSX-L
For a list of commands to manage subscriptions, send the command
INFO REFCARD
Reply | Threaded
Open this post in threaded view
|

Re: Tennis / likelyhood of winning a second time

drfg2008
In reply to this post by Marta Garcia-Granero
@Marta García-Granero-2

Thank you for the very interesting ideas you provided!

Just a question to your data: As far as I understand now, each game is not unique, each game occurs two times and has two times the same matchnumber: 1-1, 2-2, etc.. But if you consider a Best of 3 game for example you only have the following alternatives:

win - win (2:0)
win - lose - win (2:1)
lose - win - lose (1:2)
lose - lose (0:2)

So if you test the hypothesis of a higher probability after winning a set, you only have the (2:0) solution in best of three (best of five is more complicated). How can you have two lines for one game as in your example.

Frank
Dr. Frank Gaeth